
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

19: 2-3 Search Trees

SEARCHING

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Alexandra Papoutsaki
she/her/hers

Last time, we talked about dictionaries, data structures that allow us to store key value pairs and search for a value given a key. We saw that binary search trees are one
implementation of dictionaries.

TODAY’S LECTURE IN A NUTSHELL

Lecture 19: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

2

Today we will continue with a special category of search trees called 2-3 search trees.

2-3 SEARCH TREES

Visualization of insertion into a binary search tree

▸ 255 insertions in random order.

3

The main limitation of basic binary search trees is that they can become imbalanced. Here is a visualization of 255 random insertions. The tree can grow unpredictably
and become quite long which will result to longer search times when we search for a value given a key.

2-3 SEARCH TREES

Order of growth for dictionary operations

4

Worst case Average case

Search Insert Delete Search Insert Delete

BST

Goal

n n n log n log n n

log n log n log nlog nlog nlog n

Our goal today will be to overcome the limitations imposed by BSTs when implementing dictionaries for the worst case so that instead of linear running time, we
guaranteed logarithmic cost for searching, inserting, and deleting information from a dictionary.

2-3 SEARCH TREES

2-3 tree

5

▸ Definition: A 2-3 tree is either empty or a

▸ 2-node: one key (and associated value) and two links, a left to a 2-3 search
tree with smaller keys, and a right to a 2-3 search tree with larger keys
(similarly to standard BSTs), or a

▸ 3-node: two keys (and associated values) and three links, a left to a 2-3 search
tree with smaller keys than first key, a middle to a 2-3 search tree with keys
between the node’s keys, and a right to a 2-3 search tree with larger keys
than the second key.

▸ Symmetric order: In-order traversal yields keys in ascending order.

▸ Perfect balance: Every path from root to null link (empty tree) has the same
length.

To do so, we will consider 2-3 search trees. A 2-3 tree is either empty or 2- or 3-node. A 2-node is a node with one key (and its associated value) and two links, each to a
2-3 search tree. The left child contains smaller keys and the right tree larger keys (similar to the standard binary search tree). A 3-node contains two keys (and their
associated values) and three links: a left to a 2-3 tree with smaller keys that the first key, a middle to a 2-3 search tree with keys in between the node's keys, and a right
one to a 2-3 search tree with larger keys than the second key.

A 2-3 tree follows the symmetric order and has perfect balance. Symmetric order implies that if we were to do an in-order traversal, we would get keys in ascending
order. Perfect balance implies that every path from root to a null link has the same length.

2-3 SEARCH TREES

Example of a 2-3 tree

6

▸ 2-node, business as usual with BSTs.

▸ (e.g., EJ are smaller than M and R is larger than M).

▸ In 3-node,

▸ left link points to 2-3 search tree with smaller keys than first key,

▸ (e.g., AC are smaller than E.)

▸ middle link points to 2-3 search tree with keys between first and
second key,

▸ (e.g. H is between E and J.)

▸ right link points to 2-3 search tree with keys larger than second
key.

▸ (e.g, L is larger than J).

Here is an example of a 2-3 tree. 2-nodes are like regular BSTs, e.g., EJ are smaller than M and R is larger than M. For 3-nodes, we said that the left link points to smaller
keys (e.g., AC is smaller than E), middle points to keys in between (e.g., H is between E and J), and right link points to keys larger than second key, e.g., L is larger than J.

TODAY’S LECTURE IN A NUTSHELL

Lecture 19: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

7

Let's see how can we search 2-3 search tree.

SEARCH

How to search for a key

8

▸ Compare search key against (every) key in node.

▸ Find interval containing search key (left, potentially middle, or right).

▸ Follow associated link, recursively.

The search algorithm for keys in a 2-3 search tree directly generalizes the search algorithm for BSTs. To determine whether a key is in the tree, we compare it against the
keys at the root. If it is equal to any of them, we have a search hit; otherwise, we follow the link from the root to the subtree corresponding to the interval of key values
that could contain the search key. If that link is null, we have a search miss; otherwise we recursively search in that subtree.

9

Here is a visualization of search in 2-3 search trees.

TODAY’S LECTURE IN A NUTSHELL

Lecture 19: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

10

Let's look into how to insert a key (and its associated value) into a 2-3 search tree.

INSERTION

How to insert into a 2-node at bottom

11

▸ Search for key and add new key to 2-node to create a 3-node.

We will first see how to insert into a 2-node at bottom. To insert a new key in a 2-3 tree, we might do an unsuccessful search and then hook on the node at the bottom, as
we did with BSTs, but the new tree would not remain perfectly balanced. It is easy to maintain perfect balance if the node at which the search terminates is a 2-node: We
just replace the node with a 3-node containing its key and the new key to be inserted.

12

This is a visualization of what we just saw.

INSERTION

How to insert into a tree consisting of a single 3-node

13

▸ Add new key to 3-node to create a
temporary 4-node.

▸ Move middle key in 4-node into
parent.

▸ Split 4-node into two 2-nodes.

▸ Height went up by 1.

How do we insert into a tree consisting of a single 3-node? Such a tree has two keys, but no room for a new key in its one node. To be able to perform the insertion, we
temporarily put the new key into a 4-node, a natural extension of our node type that has three keys and four links. Creating the 4-node is convenient because it is easy to
convert it into a 2-3 tree made up of three 2-nodes, one with the middle key (at the root), one with the smallest of the three keys (pointed to by the left link of the root),
and one with the largest of the three keys (pointed to by the right link of the root). Before the insertion, the height was 0 and after is 1. That’s a trivial case but worth
illustrating the height growth in 2-3 search trees.

INSERTION

How to insert into a 3-node whose parent is a 2-node

14

▸ Add new key to 3-node to create a
temporary 4-node.

▸ Split 4-node into two 2-nodes and
pass middle key to parent.

▸ Replace 2-node parent with 3-node.

How do we insert into a 3-node whose parent is a 2-node? In this case, we can still make room for the new key while maintaining perfect balance in the tree, by making a
temporary 4-node as just described, then splitting the 4-node as just described, but then, instead of creating a new node to hold the middle key, moving the middle key
to the nodes parent.

INSERTION

How to insert into a 3-node whose parent is a 3-node

15

▸ Add new key to 3-node to create a
temporary 4-node.

▸ Split 4-node into two 2-nodes and
pass middle key to parent creating a
temporary 4-node.

▸ Split 4-node into two 2-nodes and
pass middle key to parent.

▸ Repeat up the tree, as necessary.

Now suppose that the search ends at a 3-node whose parent is a 3-node. Again, we make a temporary 4-node as just described, then split it and insert its middle key
into the parent. The parent was a 3-node, so we replace it with a temporary new 4-node containing the middle key from the 4-node split. Then, we perform precisely the
same transformation on that node. That is we split the new 4-node and insert its middle key into its parent. Extending to the general case is clear: we continue up the
tree, splitting 4-nodes and inserting their middle keys in their parents until reaching a 2-node, which we replace with a 3-node that does not to be further split, or until
reaching a 3-node at the root.

INSERTION

Splitting the root

16

▸ If end up with a temporary 4-node
root, split into three 2-nodes.

▸ Increases height by 1 but perfect
balance is preserved.

If we have 3-nodes along the whole path from the insertion point to the root, we end up with a temporary 4-node at the root. In this case we split the temporary 4-node
into three 2-nodes, increasing the height of the tree by 1.

17

This is a visualization of what we just saw.

TODAY’S LECTURE IN A NUTSHELL

Lecture 19: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

18

How do we go about constructing a 2-3 search tree given a number of keys?

19

This is how it would work.

CONSTRUCTION

Practice Time - Worksheet #19

20

▸ Draw the 2-3 tree that results when you insert the keys:
E A S Y Q U T I O N in that order in an initially empty tree.

Let's try this problem together.

CONSTRUCTION

ANSWER

21

▸ E A S Y Q U T I O N

https://www.cs.usfca.edu/~galles/visualization/BTree.html

These are the intermediate steps you should have gotten.

https://www.cs.usfca.edu/~galles/visualization/BTree.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 19: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

22

We talked about how insert and search information in 2-3 search trees but how fast are those operations?

PERFORMANCE

Height of 2-3 search trees

23

▸ Worst case: (all 2-nodes).

▸ Best case: (all 3-nodes)

▸ That means that storing a million nodes will lead to a tree with height between
12 and 20, and storing a billion nodes to a tree with height between 19 and
30 (not bad!).

▸ Search and insert are !

▸ But implementation is a pain and the overhead incurred could make the
algorithms slower than standard BST search and insert.

▸ We did provide insurance against a worst case but we would prefer the overhead
cost for that insurance to be low. Stay tuned!

log n

log3 n = 0.631 log n

O(log n)

Both depend on the height of the 2-3 search tree. If we have only 2-nodes (worst case), the height is log_2(n). Best-case is only 3-nodes, that is the height is log_3(n).
That means that storing a million nodes will lead to a tree with height between 12 and 20, and storing a billion nodes to a tree with height between 19 and 30 (not bad!).

So we can guarantee that search and insertion are logarithmic but the problem is that implementation is a pain and the overhead incurred could make the algorithms
slower than standard BST search and insert. We did provide insurance against a worst case but we would prefer the overhead cost for that insurance to be low. Stay
tuned!

PERFORMANCE

Summary for dictionary operations

24

Worst case Average case

Search Insert Delete Search Insert Delete

BST

2-3 search
trees

n n n log n log n n

log n log n log nlog nlog nlog n

We will start building this table further over the next weeks.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Recommended Textbook: Chapter 3.3 (Pages 424-447)

▸ Website:

▸ https://algs4.cs.princeton.edu/33balanced/

▸ Visualization:

▸ https://www.cs.usfca.edu/~galles/visualization/BTree.html (for 2-3 trees)

25

Worksheet:

▸ Lecture 19 worksheet

https://algs4.cs.princeton.edu/33balanced/
https://www.cs.usfca.edu/~galles/visualization/BTree.html
https://cs.pomona.edu/classes/cs62/worksheets/Lecture19_worksheet.pdf

ASSIGNED READINGS AND PRACTICE PROBLEMS

Problem 1 (Problem 3.3.2 in the book)

26

▸ Draw the 2-3 tree that results when you insert the keys Y, L, P, M, X, H, C, R,
A, E, S) in that order into an initially empty tree.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Problem 2 (Problem 3.3.3 in the book)

27

▸ Find an insertion order for the keys S, E, A, R, C, H, X, M that leads to a 2-3
search tree of height 1.

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 1 (Problem 3.3.2 in the book)

28

▸ Draw the 2-3 tree that results when you insert the keys Y, L, P, M, X, H, C, R,
A, E, S) in that order into an initially empty tree.

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 2 (Problem 3.3.3 in the book)

29

▸ Find an insertion order for the keys S, E, A, R, C, H, X, M that leads to a 2-3
search tree of height 1.

▸ Insertion order: E A M X R C H S

▸

