
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

19: 2-3 Search Trees

SEARCHING

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Alexandra Papoutsaki
she/her/hers

TODAY’S LECTURE IN A NUTSHELL

Lecture 19: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

2

2-3 SEARCH TREES

Visualization of insertion into a binary search tree

▸ 255 insertions in random order.

3

2-3 SEARCH TREES

Order of growth for dictionary operations

4

Worst case Average case

Search Insert Delete Search Insert Delete

BST

Goal

n n n log n log n n

log n log n log nlog nlog nlog n

2-3 SEARCH TREES

2-3 tree

5

▸ Definition: A 2-3 tree is either empty or a

▸ 2-node: one key (and associated value) and two links, a left to a 2-3 search
tree with smaller keys, and a right to a 2-3 search tree with larger keys
(similarly to standard BSTs), or a

▸ 3-node: two keys (and associated values) and three links, a left to a 2-3 search
tree with smaller keys than first key, a middle to a 2-3 search tree with keys
between the node’s keys, and a right to a 2-3 search tree with larger keys
than the second key.

▸ Symmetric order: In-order traversal yields keys in ascending order.

▸ Perfect balance: Every path from root to null link (empty tree) has the same
length.

2-3 SEARCH TREES

Example of a 2-3 tree

6

▸ 2-node, business as usual with BSTs.

▸ (e.g., EJ are smaller than M and R is larger than M).

▸ In 3-node,

▸ left link points to 2-3 search tree with smaller keys than first key,

▸ (e.g., AC are smaller than E.)

▸ middle link points to 2-3 search tree with keys between first and
second key,

▸ (e.g. H is between E and J.)

▸ right link points to 2-3 search tree with keys larger than second
key.

▸ (e.g, L is larger than J).

TODAY’S LECTURE IN A NUTSHELL

Lecture 19: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

7

SEARCH

How to search for a key

8

▸ Compare search key against (every) key in node.

▸ Find interval containing search key (left, potentially middle, or right).

▸ Follow associated link, recursively.

9

TODAY’S LECTURE IN A NUTSHELL

Lecture 19: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

10

INSERTION

How to insert into a 2-node at bottom

11

▸ Search for key and add new key to 2-node to create a 3-node.

12

INSERTION

How to insert into a tree consisting of a single 3-node

13

▸ Add new key to 3-node to create a
temporary 4-node.

▸ Move middle key in 4-node into
parent.

▸ Split 4-node into two 2-nodes.

▸ Height went up by 1.

INSERTION

How to insert into a 3-node whose parent is a 2-node

14

▸ Add new key to 3-node to create a
temporary 4-node.

▸ Split 4-node into two 2-nodes and
pass middle key to parent.

▸ Replace 2-node parent with 3-node.

INSERTION

How to insert into a 3-node whose parent is a 3-node

15

▸ Add new key to 3-node to create a
temporary 4-node.

▸ Split 4-node into two 2-nodes and
pass middle key to parent creating a
temporary 4-node.

▸ Split 4-node into two 2-nodes and
pass middle key to parent.

▸ Repeat up the tree, as necessary.

INSERTION

Splitting the root

16

▸ If end up with a temporary 4-node
root, split into three 2-nodes.

▸ Increases height by 1 but perfect
balance is preserved.

17

TODAY’S LECTURE IN A NUTSHELL

Lecture 19: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

18

19

CONSTRUCTION

Practice Time - Worksheet #19

20

▸ Draw the 2-3 tree that results when you insert the keys:
E A S Y Q U T I O N in that order in an initially empty tree.

CONSTRUCTION

ANSWER

21

▸ E A S Y Q U T I O N

https://www.cs.usfca.edu/~galles/visualization/BTree.html

https://www.cs.usfca.edu/~galles/visualization/BTree.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 19: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

22

PERFORMANCE

Height of 2-3 search trees

23

▸ Worst case: (all 2-nodes).

▸ Best case: (all 3-nodes)

▸ That means that storing a million nodes will lead to a tree with height between
12 and 20, and storing a billion nodes to a tree with height between 19 and
30 (not bad!).

▸ Search and insert are !

▸ But implementation is a pain and the overhead incurred could make the
algorithms slower than standard BST search and insert.

▸ We did provide insurance against a worst case but we would prefer the overhead
cost for that insurance to be low. Stay tuned!

log n

log3 n = 0.631 log n

O(log n)

PERFORMANCE

Summary for dictionary operations

24

Worst case Average case

Search Insert Delete Search Insert Delete

BST

2-3 search
trees

n n n log n log n n

log n log n log nlog nlog nlog n

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Recommended Textbook: Chapter 3.3 (Pages 424-447)

▸ Website:

▸ https://algs4.cs.princeton.edu/33balanced/

▸ Visualization:

▸ https://www.cs.usfca.edu/~galles/visualization/BTree.html (for 2-3 trees)

25

Worksheet:

▸ Lecture 19 worksheet

https://algs4.cs.princeton.edu/33balanced/
https://www.cs.usfca.edu/~galles/visualization/BTree.html
https://cs.pomona.edu/classes/cs62/worksheets/Lecture19_worksheet.pdf

ASSIGNED READINGS AND PRACTICE PROBLEMS

Problem 1 (Problem 3.3.2 in the book)

26

▸ Draw the 2-3 tree that results when you insert the keys Y, L, P, M, X, H, C, R,
A, E, S) in that order into an initially empty tree.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Problem 2 (Problem 3.3.3 in the book)

27

▸ Find an insertion order for the keys S, E, A, R, C, H, X, M that leads to a 2-3
search tree of height 1.

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 1 (Problem 3.3.2 in the book)

28

▸ Draw the 2-3 tree that results when you insert the keys Y, L, P, M, X, H, C, R,
A, E, S) in that order into an initially empty tree.

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 2 (Problem 3.3.3 in the book)

29

▸ Find an insertion order for the keys S, E, A, R, C, H, X, M that leads to a 2-3
search tree of height 1.

▸ Insertion order: E A M X R C H S

▸

