CSO62 DATA STRUCTURES AND ADVANCED PROGRAMMING

19: 2-3 Search Trees

Alexandra Papoutsaki she/her/hers

Lecture 19: 2-3 Search Trees

, 2-3 Search Trees

- Search
- Insertion
- Construction
- Performance

Visualization of insertion into a binary search tree

, 255 insertions in random order.

Order of growth for dictionary operations

	Worst case			Average case		
	Search	Insert	Delete	Search	Insert	Delete
BST	n	n	n	$\log n$	$\log n$	\sqrt{n}
Goal	$\log n$					

2-3 tree

Anatomy of a 2-3 search tree

- Definition: A 2-3 tree is either empty or a
- 2-node: one key (and associated value) and two links, a left to a 2-3 search tree with smaller keys, and a right to a 2-3 search tree with larger keys (similarly to standard BSTs), or a
- 3-node: two keys (and associated values) and three links, a left to a 2-3 search tree with smaller keys than first key, a middle to a 2-3 search tree with keys between the node's keys, and a right to a 2-3 search tree with larger keys than the second key.
- Symmetric order: In-order traversal yields keys in ascending order.
- Perfect balance: Every path from root to null link (empty tree) has the same length.

Example of a 2-3 tree

- 2-node, business as usual with BSTs.
- (e.g., EJ are smaller than M and R is larger than M).
- In 3-node,
- left link points to 2-3 search tree with smaller keys than first key,
- (e.g., AC are smaller than E.)
- middle link points to 2-3 search tree with keys between first and second key,
(e.g. H is between E and J.)

Anatomy of a 2-3 search tree

- right link points to $2-3$ search tree with keys larger than second key.
- (e.g, L is larger than J).

Lecture 19: 2-3 Search Trees

- 2-3 Search Trees
- Search
- Insertion
- Construction
- Performance

How to search for a key

- Compare search key against (every) key in node.
- Find interval containing search key (left, potentially middle, or right).
- Follow associated link, recursively.

unsuccessful search for B

3.3 2-3 Tree Demo

- search
- insertion

Algorithms
construction

Lecture 19: 2-3 Search Trees

- 2-3 Search Trees
- Search
- Insertion
- Construction
- Performance

How to insert into a 2-node at bottom

- Search for key and add new key to 2-node to create a 3-node.

Insert into a 2-node

2-3 tree demo: insertion

Insert into a 2 -node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.
insert K

How to insert into a tree consisting of a single 3-node

- Add new key to 3-node to create a temporary 4-node.
- Move middle key in 4-node into inserting S parent.
- Split 4-node into two 2-nodes.
- Height went up by 1.

Insert into a single 3-node

How to insert into a 3 -node whose parent is a 2 -node

- Add new key to 3-node to create a temporary 4-node.
- Split 4-node into two 2-nodes and pass middle key to parent.
- Replace 2-node parent with 3-node.
inserting Z

replace 2 -node

split 4-node into two 2 -nodes
pass middle key to parent

Insert into a 3-node whose parent is a 2-node

How to insert into a 3 -node whose parent is a 3 -node

- Add new key to 3-node to create a temporary 4-node.
- Split 4-node into two 2-nodes and pass middle key to parent creating a temporary 4-node.
- Split 4-node into two 2-nodes and pass middle key to parent.
- Repeat up the tree, as necessary.

add middle key C to 3-node
to make temporary 4 -node
split 4-node into two 2-nodes
pass middle key to parent
add middle key E to 2-node to make new 3 -node

split 4-node into two 2 -nodes
pass middle key to parent

Splitting the root

- If end up with a temporary 4-node root, split into three 2-nodes.
- Increases height by 1 but perfect balance is preserved.
inserting D
search for D ends at this 3-node

add new key D to 3-node
to make temporary 4-node

add middle key C to 3-node to make temporary 4-node

split 4-node into two 2 -nodes pass middle key to parent
split 4-node into three 2-nodes increasing tree height by 1

Splitting the root

2-3 tree demo: insertion

Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.
insert K

Lecture 19: 2-3 Search Trees

- 2-3 Search Trees
- Search
- Insertion
- Construction
- Performance

2-3 tree demo: construction

insert R

Practice Time - Worksheet \#19

- Draw the 2-3 tree that results when you insert the keys: EASYQUTION in that order in an initially empty tree.

ANSWER

- EASYOUTION

Lecture 19: 2-3 Search Trees

- 2-3 Search Trees
- Search
- Insertion
- Construction
- Performance

Height of 2-3 search trees

, Worst case: $\log n$ (all 2-nodes).
(Best case: $\log _{3} n=0.631 \log n$ (all 3-nodes)

- That means that storing a million nodes will lead to a tree with height between 12 and 20, and storing a billion nodes to a tree with height between 19 and 30 (not bad!).
- Search and insert are $O(\log n)$!
- But implementation is a pain and the overhead incurred could make the algorithms slower than standard BST search and insert.
- We did provide insurance against a worst case but we would prefer the overhead cost for that insurance to be low. Stay tuned!

Summary for dictionary operations

	Worst case			Average case		
	Search	Insert	Delete	Search	Insert	Delete
BST	n	n	n	$\log n$	$\log n$	\sqrt{n}
2-3 search trees	$\log n$					

Readings:

- Recommended Textbook: Chapter 3.3 (Pages 424-447)
- Website:
- https://algs4.cs.princeton.edu/33balanced/
- Visualization:
- https://www.cs.usfca.edu/~galles/visualization/BTree.html (for 2-3 trees)

Worksheet:

- Lecture 19 worksheet

Problem 1 (Problem 3.3.2 in the book)

- Draw the 2-3 tree that results when you insert the keys Y, L, P, M, X, H, C, R, A, E, S) in that order into an initially empty tree.

Problem 2 (Problem 3.3.3 in the book)

- Find an insertion order for the keys $\mathrm{S}, \mathrm{E}, \mathrm{A}, \mathrm{R}, \mathrm{C}, \mathrm{H}, \mathrm{X}, \mathrm{M}$ that leads to a 2-3 search tree of height 1.

ANSWER 1 (Problem 3.3.2 in the book)

- Draw the 2-3 tree that results when you insert the keys Y, L, P, M, X, H, C, R, A, E, S) in that order into an initially empty tree.

ANSWER 2 (Problem 3.3.3 in the book)

- Find an insertion order for the keys S, E, A, R, C, H, X, M that leads to a 2-3 search tree of height 1.
- Insertion order: EAMXRCHS

