CS062

DATA STRUCTURES AND ADVANCED PROGRAMMING 16: Binary Trees, Binary Search, Heaps, and Priority Queues

Alexandra Papoutsaki she/her/hers

Lecture 16: Binary Trees, Binary Search, Heaps, and Priority Queues

- Binary Trees
- Tree traversals
- Binary Search
- Binary Heaps
- Priority Queues

Trees in Computer Science

- Abstract data types that store elements hierarchically rather than linearly.
- Examples of hierarchical structures:
 - Organization charts for
 - Companies (CEO at the top followed by CFO, CMO, COO, CTO, etc).
 - Universities (Board of Trustees at the top, followed by President, then by VPs, etc).
 - Sitemaps (home page links to About, Products, etc. They link to other pages).
 - Computer file systems (user at top followed by Documents, Downloads, Music, etc. Each folder can hold more folders.).

Trees in Computer Science

 Hierarchical: Each element in a tree has a single parent (immediate ancestor) and zero or more children (immediate descendants).

Definition of a tree

- A tree T is a set of nodes that store elements based on a parent-child relationship:
 - ▶ If *T* is non-empty, it has a node called the root of *T*, that has no parent.
 - Here, the root is A.
 - Each node v, other than the root, has a unique parent node u. Every node with parent u is a child of u.
 - Here, E's parent is C and F has two children, H and I.

Tree Terminology

- ▶ Edge: a pair of nodes s.t. one is the parent of the other, e.g., (K,C).
- Parent node is directly above child node, e.g., K is parent of C and N.
- Sibling nodes have same parent, e.g., A and F.
- K is ancestor of B.
- B is descendant of K.
- Node plus all descendants gives subtree.
- Nodes without descendants are called leaves or external. The rest are called internal.
- A set of trees is called a forest.

More Terminology

- Simple path: a series of distinct nodes s.t. there are edges between successive nodes, e.g., K-N-V-U.
- ▶ Path length: number of edges in path, e.g., path K-C-A has length 2.
- ▶ Height of node: length of longest path from the node to a leaf, e.g., N's height is 2 (for path N-V-U).
- ▶ Height of tree: length of longest path from the root to a leaf. Here 3.
- Degree of node: number of its children, e.g., F's degree is 2.
- Degree of tree (arity): max degree of any of its nodes. Here is 2.
- ▶ Binary tree: a tree with arity of 2, that is any node will have 0-2 children.

R N 8

Even More Terminology

- Level/depth of node defined recursively:
 - Root is at level 0.
 - Level of any other node is equal to level of parent + 1.
 - It is also known as the length of path from root or number of ancestors excluding itself.
- Height of node defined recursively:
 - If leaf, height is 0.
 - Else, height is max height of child + 1.

But wait there's more!

- Full (or proper): a binary tree whose every node has 0 or 2 children.
- Complete: a binary tree with minimal height. Any holes in tree would appear at last level to right, i.e., all nodes of last level are as left as possible.

Neither complete nor full

Complete but not full

Full but not complete

Complete and full

http://code.cloudkaksha.org/binary-tree/types-binary-tree

Practice Time: This tree is

- A: Full
- B: Complete
- C: Full and Complete

Answer

- A: Full
- **B: Complete**
- C: Full and Complete
- D: Neither Full nor Complete

Practice Time: This tree is

- A: Full
- B: Complete
- C: Full and Complete
- D: Neither Full nor Complete

Answer

- A: Full
- B: Complete
- C: Full and Complete
- D: Neither Full nor Complete

R N 15

Counting in binary trees

- ▶ Lemma: if T is a binary tree, then at level k, T has $\leq 2^k$ nodes.
 - E.g., at level 2, at most 4 nodes (A, F, M, V)
- Theorem: If T has height h, then # of nodes n in T satisfy: $h+1 \le n \le 2^{h+1}-1$.
- ▶ Equivalently, if T has n nodes, then $log(n+1) 1 \le h \le n-1$.
 - ▶ Worst case: When h = n 1 or O(n), the tree looks like a left or right-leaning "stick".
 - ▶ Best case: When a tree is as compact as possible (e.g., complete) it has $O(\log n)$ height.

Practice Time - Problem 1 Worksheet #16

Follow the instructions in the worksheet about the

following tree: 5 10

ANSWER 1 - Worksheet #16

Root: 2

Descendants of 7: 2, 10, 6, 5, 11

▶ Leaves: 2 (in black), 10, 5, 11, 4 ▶ Length of path 2-5-9-4: 3

Internal nodes: 7, 5, 6, 9

Height of 7: 2

Siblings of 10: 2, 6

Height of tree: 3

Parent of 6: 7

Degree of 7: 3

Children of 2 (in red): 7, 5

Arity/Degree of tree: 3

Ancestors of 10: 7 and 2 (in red) Level/depth of 11: 3

Basic idea behind a simple implementation

```
public class BinaryTree<E> {
   private Node root;
   /**
    * A node subclass which contains various recursive methods
      @param <E> The type of the contents of nodes
   private class Node {
       private E element;
       private Node left;
       private Node right;
       /**
        * Node constructor with subtrees
        * @param left the left node child
        * @param right the right node child
        * @param E
                        the element contained in the node
       public Node(Node left, Node right, E element) {
           this.left = left;
          this.right = right;
           this.element = item;
```


Lecture 16: Binary Trees, Binary Search, Heaps, and Priority Queues

- Binary Trees
- Tree traversals
- Binary Search
- Binary Heaps
- Priority Queues

Pre-order traversal

- Preorder(Tree)
 - Mark root as visited

Preorder(Left Subtree)

Preorder(Right Subtree)

KCABFDHNMVU

In-order traversal

- Inorder(Tree)
 - Inorder(Left Subtree)
 - Mark root as visited
 - Inorder(Right Subtree)
- A B C D F H K M N U V

Post-order traversal

- Postorder(Tree)
 - Postorder(Left Subtree)

Postorder(Right Subtree)

- Mark root as visited
- BADHFCMUVNK

Level-order traversal

From left to right, mark nodes of level i as visited before nodes in level i+1. Start at level 0.

KCNAFMVBDHU

Practice Time - Problem 2 Worksheet #16

List the nodes in pre-order, in-order, post-order, and level order:

ANSWER Problem 2 Worksheet #16

- Pre-order: 8, 5, 9, 7, 1, 12, 2, 4, 11, 3
- In-order: 9, 5, 1, 7, 2, 12, 8, 4, 3, 11
- Post-order: 9, 1, 2, 12, 7, 5, 3, 11, 4, 8
- Level-order: 8, 5, 4, 9, 7, 11, 1, 12, 3, 2

Lecture 16: Binary Trees, Binary Search, Heaps, and Priority Queues

- Binary Trees
- Tree traversals
- Binary Search
- Binary Heaps
- Priority Queues

Binary search

- Goal: Given a sorted array and a key, find index of the key in the array.
- Basic mechanism: Compare key against middle entry.
 - If too small, repeat in left half.
 - If too large, repeat in right half.
 - If equal, you are done.

Binary search implementation

- First binary search published in 1946.
- First bug-free one in 1962.
- Bug in Java's Arrays.binarySearch() discovered in 2006 https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

```
public static int binarySearch(int[] a, int key) {
    int lo = 0, hi = a.length-1;
    while (lo <= hi) {
        int mid = lo + (hi - lo) / 2;
        if (key < a[mid])
            hi = mid - 1;
        else if (key > a[mid])
            lo = mid + 1;
        else return mid; }
    return -1;
}
```

• Uses at most $1 + \log n$ key compares to search in a sorted array of size n, that is it is $O(\log n)$.

Lecture 16: Binary Trees, Binary Search, Heaps, and Priority Queues

- Binary Trees
- Tree traversals
- Binary Search
- Binary Heaps
- Priority Queues

Heap-ordered binary trees

- A binary tree is heap-ordered if the key in each node is larger than or equal to the keys in that node's two children (if any).
- Equivalently, the key in each node of a heap-ordered binary tree is smaller than or equal to the key in that node's parent (if any).
- No assumption of which child is smaller.
- Moving up from any node, we get a non-decreasing sequence of keys.
- Moving down from any node we get a non-increasing sequence of keys.

Heap-ordered binary trees

The largest key in a heap-ordered binary tree is found at the root!

Binary heap representation

- We could use a linked representation but we would need three links for every node (one for parent, one for left subtree, one for right subtree).
- If we use complete binary trees, we can use instead an array.
 - Compact arrays vs explicit links means memory savings!

Binary heaps

- Binary heap: the array representation of a complete heapordered binary tree.
 - Items are stored in an array such that each key is guaranteed to be larger (or equal to) than the keys at two other specific positions (children).
- Max-heap but there are min-heaps, too.

Array representation of heaps

- Nothing is placed at index 0.
- Root is placed at index 1.
- Rest of nodes are placed in level order.
- No unnecessary indices and no wasted space because it's complete.

Heap representations

Reuniting immediate family members.

- For every node at index k, its parent is at index $\lfloor k/2 \rfloor$.
- Its two children are at indices 2k and 2k + 1.
- We can travel up and down the heap by using this simple arithmetic on array indices.

Swim/promote/percolate up/bottom up reheapify

- Scenario: a key becomes larger than its parent therefore it violates the heap-ordered property.
- To eliminate the violation:
 - Exchange key in child with key in parent.
 - Repeat until heap order restored.

Swim/promote/percolate up

```
private void swim(int k) {
    while (k > 1 && a[k/2].compareTo(a[k])<0) {
        E temp = a[k];
        a[k] = a[k/2];
        a[k/2] = temp;
        k = k/2;
    }
}</pre>
E I H G violates heap order (larger key than parent)
```


Binary heap: insertion

- Insert: Add node at end in bottom level, then swim it up.
- Cost: At most $\log n + 1$ compares.

```
public void insert(E x) {
    a[++n] = x;
    swim(n);
}
```


Practice Time - Problem 3 Worksheet #16

Insert 47 in this binary heap.

Sink/demote/top down heapify

- Scenario: a key becomes smaller than one (or both) of its children's keys.
- To eliminate the violation:
 - Exchange key in parent with key in larger child.
 - > Repeat until heap order is restored.

Sink/demote/top down heapify

```
violates heap order
private void sink(int k) {
                                            (smaller than a child)
    while (2*k <= n) {
         int j = 2*k;
         if (j < n \& a[j].compareTo(a[j+1])<0)
             j++;
         if (a[k].compareTo(a[j])>=0))
             break;
         E \text{ temp} = a[k];
         a[k] = a[j];
         a[j] = temp;
         k = j;
```

Practice Time - Problem 4 Worksheet #16

Sink 7 to its appropriate place in this binary heap.

Binary heap: return (and delete) the maximum

- Delete max: Exchange root with node at end. Return it and delete it. Sink the new root down.
- \triangleright Cost: At most $2 \log n$ compares.

Binary heap: delete and return maximum

Practice Time - Problem 5 Worksheet #16

Delete max (and return it!)

Things to remember about running time complexity of heaps

- Insertion is $O(\log n)$.
- ▶ Delete max is $O(\log n)$.
- **Space** efficiency is O(n).

Algorithms

2.4 BINARY HEAP DEMO

Lecture 16: Binary Trees, Binary Search, Heaps, and Priority Queues

- Binary Trees
- Tree traversals
- Binary Search
- Binary Heaps
- Priority Queues

Priority Queue ADT

- Two operations:
 - Delete the maximum
 - Insert
- Applications: load balancing and interruption handling in OS, Huffman codes for compression, A* search for AI, Dijkstra's and Prim's algorithm for graph search, etc.
- How can we implement a priority queue efficiently?

Option 1: Unordered array

- The lazy approach where we defer doing work (deleting the maximum) until necessary.
- Insert is O(1) and assumes we have the space in the array.
- Delete maximum is O(n) (have to traverse the entire array to find the maximum element and exchange it with the last element).

```
public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
   private Key[] pq; // elements
   private int n;  // number of elements
   // set inititial size of heap to hold size elements
   public UnorderedArrayMaxPQ(int capacity) {
       pq = (Key[]) new Comparable[capacity];
       n = 0;
    }
   public boolean isEmpty() { return n == 0; }
   public int size()
                     { return n;
   public void insert(Key x) { pq[n++] = x; }
   public Key delMax() {
       int max = 0;
       for (int i = 1; i < n; i++){
           if (pq[max].compareTo(pq[i]) < 0) {</pre>
                max = i;
       Key temp = pq[max];
       pq[max] = pq[n-1];
       pq[n-1] = temp;
       return pq[--n];
```


Practice Time

Given an empty array of capacity 10, perform the following operations in a priority queue based on an unordered array (lazy approach):

1. Insert P

7. Insert M

2. Insert Q

8. Delete max

3. Insert E

9. Insert P

4. Delete max

10. Insert L

5. Insert X

11. Insert E

6. Insert A

12. Delete max

PRIORITY QUEUES

Answer

Option 2: Ordered array

- The eager approach where we do the work (keeping the array sorted) up front to make later operations efficient.
- Insert is O(n) (we have to find the index to insert and shift elements to perform insertion).
- Delete maximum is O(1) (just take the last element which will be the maximum).

```
public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
   private Key[] pq; // elements
   private int n;  // number of elements
   // set inititial size of heap to hold size elements
   public OrderedArrayMaxPQ(int capacity) {
       pq = (Key[]) (new Comparable[capacity]);
       n = 0;
   public boolean isEmpty() { return n == 0; }
   public int size() { return n;
   public Key delMax() { return pq[--n]; }
   public void insert(Key key) {
       int i = n-1;
       while (i \geq 0 && key.compareTo(pq[i]) < 0) {
           pq[i+1] = pq[i];
           i--;
       }
       pq[i+1] = key;
       n++;
```


Practice Time

Given an empty array of capacity 10, perform the following operations in a priority queue based on an ordered array (eager approach):

1. Insert P

7. Insert M

2. Insert Q

8. Delete max

3. Insert E

9. Insert P

4. Delete max

10. Insert L

5. Insert X

11. Insert E

6. Insert A

12. Delete max

Answer

Option 3: Binary heap

- Will allow us to both insert and delete max in $O(\log n)$ running time.
- There is no way to implement a priority queue in such a way that insert and delete max can be achieved in O(1) running time.
- Priority queues are synonyms to binary heaps.

Practice Time

Given an empty binary heap that represents a priority queue, perform the following operations:

1. Insert P

7. Insert M

2. Insert Q

8. Delete max

3. Insert E

9. Insert P

4. Delete max

10. Insert L

5. Insert X

11. Insert E

6. Insert A

12. Delete max

Answer

Lecture 16: Binary Trees, Binary Search, Heaps, and Priority Queues

- Binary Trees
- Tree traversals
- Binary Search
- Binary Heaps
- Priority Queues

Readings:

- Recommended Textbook:
 - Chapter 2.4 (Pages 308-327)
- Website:
 - Heaps: https://algs4.cs.princeton.edu/24pq/
- Visualization:
 - Insert and ExtractMax: https://visualgo.net/en/heap

Worksheet

<u>Lecture 16 worksheet</u>

Practice Problem 1

- Given the tree below, list the nodes in order of visit in a:
 - pre-order traversal
 - in-order traversal
 - post-order traversal
 - level-order traversal

Practice Problem 2

• Given the binary heap below, delete and return the max.

Practice Problem 3

Suppose that the sequence 16, 18, 9, 15, *, 18, *, *, 9, *, 20, *, 25, *, *, *, 17, 21, 5, *, *, *, 21, *, 5 (where a number means insert and an asterisk means delete the maximum) is applied to an initially empty priority queue. Give the sequence of numbers returned by the delete maximum operations.

- pre-order: 90, 36, 25, 2, 3, 26, 19, 17, 7, 1
- in-order: 2, 25, 3, 36, 19, 26, 90, 7, 17, 1
- post-order: 2, 3, 25, 19, 26, 36, 7, 1, 17, 90
- level-order: 90, 36, 17, 25, 26, 7, 1, 2, 3, 19

Given the binary heap below, delete and return the max.

- Suppose that the sequence 16, 18, 9, 15, *, 18, *, *, 9, *, 20, *, 25, *, *, *, 17, 21, 5, *, *, *, 21, *, 5 (where a number means insert and an asterisk means delete the maximum) is applied to an initially empty priority queue. Give the sequence of numbers returned by the delete maximum operations.
- 18, 18, 16, 15, 20, 25, 9, 9, 21, 17, 5, 21