
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING
16: Binary Trees, Binary Search, Heaps, and
Priority Queues

SORTING

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Alexandra Papoutsaki
she/her/hers

TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Binary Trees, Binary Search, Heaps, and Priority Queues

▸ Binary Trees

▸ Tree traversals

▸ Binary Search

▸ Binary Heaps

▸ Priority Queues

2

BINARY TREES

Trees in Computer Science

▸ Abstract data types that store elements hierarchically rather than linearly.

▸ Examples of hierarchical structures:

▸ Organization charts for

▸ Companies (CEO at the top followed by CFO, CMO, COO, CTO, etc).

▸ Universities (Board of Trustees at the top, followed by President, then by
VPs, etc).

▸ Sitemaps (home page links to About, Products, etc. They link to other pages).

▸ Computer file systems (user at top followed by Documents, Downloads,
Music, etc. Each folder can hold more folders.).

3

BINARY TREES

Trees in Computer Science

▸ Hierarchical: Each element in a tree has a single parent
(immediate ancestor) and zero or more children
(immediate descendants).

4

Real tree root and leaves

CS tree root and leaves

BINARY TREES

Definition of a tree

▸ A tree is a set of nodes that store elements based on a
parent-child relationship:

▸ If is non-empty, it has a node called the root of , that has
no parent.

▸ Here, the root is A.

▸ Each node , other than the root, has a unique parent node
. Every node with parent is a child of .

▸ Here, E’s parent is C and F has two children, H and I.

T

T T

v
u u u

5

BINARY TREES

Tree Terminology

6

▸ Edge: a pair of nodes s.t. one is the parent of the other, e.g., (K,C).

▸ Parent node is directly above child node, e.g., K is parent of C and N.

▸ Sibling nodes have same parent, e.g., A and F.

▸ K is ancestor of B.

▸ B is descendant of K.

▸ Node plus all descendants gives subtree.

▸ Nodes without descendants are called leaves or external. The rest are called
internal.

▸ A set of trees is called a forest.

BINARY TREES

More Terminology

7

▸ Simple path: a series of distinct nodes s.t. there are edges between
successive nodes, e.g., K-N-V-U.

▸ Path length: number of edges in path, e.g., path K-C-A has length 2.

▸ Height of node: length of longest path from the node to a leaf, e.g., N’s
height is 2 (for path N-V-U).

▸ Height of tree: length of longest path from the root to a leaf. Here 3.

▸ Degree of node: number of its children, e.g., F’s degree is 2.

▸ Degree of tree (arity): max degree of any of its nodes. Here is 2.

▸ Binary tree: a tree with arity of 2, that is any node will have 0-2 children.

BINARY TREES

Even More Terminology

8

▸ Level/depth of node defined recursively:

▸ Root is at level 0.

▸ Level of any other node is equal to level of parent + 1.

▸ It is also known as the length of path from root or number of
ancestors excluding itself.

▸ Height of node defined recursively:

▸ If leaf, height is 0.

▸ Else, height is max height of child + 1.

BINARY TREES

But wait there’s more!

9

▸ Full (or proper): a binary tree whose every node has 0 or 2
children.

▸ Complete: a binary tree with minimal height. Any holes in
tree would appear at last level to right, i.e., all nodes of last
level are as left as possible.

BINARY TREES 10

http://code.cloudkaksha.org/binary-tree/types-binary-tree

▸ A: Full

▸ B: Complete

▸ C: Full and Complete

▸ D: Neither Full nor Complete

BINARY TREES

Practice Time: This tree is

11

▸ A: Full

▸ B: Complete

▸ C: Full and Complete

▸ D: Neither Full nor Complete

BINARY TREES

Answer

12

▸ A: Full

▸ B: Complete

▸ C: Full and Complete

▸ D: Neither Full nor Complete

BINARY TREES

Practice Time: This tree is

13

▸ A: Full

▸ B: Complete

▸ C: Full and Complete

▸ D: Neither Full nor Complete

BINARY TREES

Answer

14

BINARY TREES

Counting in binary trees

15

▸ Lemma: if is a binary tree, then at level , has nodes.

▸ E.g., at level 2, at most 4 nodes (A, F, M, V)

▸ Theorem: If has height , then # of nodes in satisfy:
.

▸ Equivalently, if has nodes, then .

▸ Worst case: When or , the tree looks like a left or right-
leaning “stick”.

▸ Best case: When a tree is as compact as possible (e.g., complete) it has
 height.

T k T ≤ 2k

T h n T
h + 1 ≤ n ≤ 2h+1 − 1

T n log(n + 1) − 1 ≤ h ≤ n − 1

h = n − 1 O(n)

O(log n)

BINARY TREES

Practice Time - Problem 1 Worksheet #16

16

▸ Follow the instructions in the worksheet about the
following tree:

BINARY TREES

ANSWER 1 - Worksheet #16

17

▸ Root: 2

▸ Leaves: 2 (in black), 10, 5, 11, 4

▸ Internal nodes: 7, 5, 6, 9

▸ Siblings of 10: 2, 6

▸ Parent of 6: 7

▸ Children of 2 (in red): 7, 5

▸ Ancestors of 10: 7 and 2 (in red)

▸ Descendants of 7: 2, 10, 6, 5, 11

▸ Length of path 2-5-9-4: 3

▸ Height of 7: 2

▸ Height of tree: 3

▸ Degree of 7: 3

▸ Arity/Degree of tree: 3

▸ Level/depth of 11: 3

BINARY TREES

Basic idea behind a simple implementation

18

public class BinaryTree<E> {
private Node root;

/**
 * A node subclass which contains various recursive methods
 *
 * @param <E> The type of the contents of nodes
 */
private class Node {

private E element;

private Node left;
private Node right;  

/**
 * Node constructor with subtrees
 *
 * @param left the left node child
 * @param right the right node child
 * @param E the element contained in the node
 */
public Node(Node left, Node right, E element) {

this.left = left;
this.right = right;
this.element = item;

}

TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Binary Trees, Binary Search, Heaps, and Priority Queues

▸ Binary Trees

▸ Tree traversals

▸ Binary Search

▸ Binary Heaps

▸ Priority Queues

19

TREE TRAVERSALS

Pre-order traversal

20

▸ Preorder(Tree)

▸ Mark root as visited

▸ Preorder(Left Subtree)

▸ Preorder(Right Subtree)

▸ K C A B F D H N M V U

TREE TRAVERSALS

In-order traversal

21

▸ Inorder(Tree)

▸ Inorder(Left Subtree)

▸ Mark root as visited

▸ Inorder(Right Subtree)

▸ A B C D F H K M N U V

TREE TRAVERSALS

Post-order traversal

22

▸ Postorder(Tree)

▸ Postorder(Left Subtree)

▸ Postorder(Right Subtree)

▸ Mark root as visited

▸ B A D H F C M U V N K

TREE TRAVERSALS

Level-order traversal

23

▸ From left to right, mark nodes of level as visited before
nodes in level . Start at level 0.

▸ K C N A F M V B D H U

i
i + 1

TREE TRAVERSALS

Practice Time - Problem 2 Worksheet #16

24

▸ List the nodes in pre-order, in-order, post-order, and level
order:

TREE TRAVERSALS

ANSWER Problem 2 Worksheet #16

25

▸ Pre-order: 8, 5, 9, 7, 1, 12, 2, 4, 11, 3

▸ In-order: 9, 5, 1, 7, 2, 12, 8, 4, 3, 11

▸ Post-order: 9, 1, 2, 12, 7, 5, 3, 11, 4, 8

▸ Level-order: 8, 5, 4, 9, 7, 11, 1, 12, 3, 2

TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Binary Trees, Binary Search, Heaps, and Priority Queues

▸ Binary Trees

▸ Tree traversals

▸ Binary Search

▸ Binary Heaps

▸ Priority Queues

26

BINARY SEARCH

Binary search

▸ Goal: Given a sorted array and a key, find index of the key
in the array.

▸ Basic mechanism: Compare key against middle entry.

▸ If too small, repeat in left half.

▸ If too large, repeat in right half.

▸ If equal, you are done.

27

BINARY SEARCH

Binary search implementation

▸ First binary search published in 1946.

▸ First bug-free one in 1962.

▸ Bug in Java’s Arrays.binarySearch() discovered in 2006 https://ai.googleblog.com/
2006/06/extra-extra-read-all-about-it-nearly.html

public static int binarySearch(int[] a, int key) {  
 int lo = 0, hi = a.length-1;
 while (lo <= hi) {  
 int mid = lo + (hi - lo) / 2;  
 if (key < a[mid])  
 hi = mid - 1;  
 else if (key > a[mid])  
 lo = mid + 1;  
 else return mid; }  
 return -1;  
}
▸ Uses at most key compares to search in a sorted array of size , that is it is .1 + log n n O(log n)

28

https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Binary Trees, Binary Search, Heaps, and Priority Queues

▸ Binary Trees

▸ Tree traversals

▸ Binary Search

▸ Binary Heaps

▸ Priority Queues

29

BINARY HEAP

Heap-ordered binary trees

▸ A binary tree is heap-ordered if the key in each node is larger than
or equal to the keys in that node’s two children (if any).

▸ Equivalently, the key in each node of a heap-ordered binary tree is
smaller than or equal to the key in that node’s parent (if any).

▸ No assumption of which child is smaller.

▸ Moving up from any node, we get a non-decreasing sequence of
keys.

▸ Moving down from any node we get a non-increasing sequence of
keys.

30

BINARY HEAP

Heap-ordered binary trees

▸ The largest key in a heap-ordered binary tree is found at
the root!

31

BINARY HEAP

Binary heap representation

▸ We could use a linked representation but we would need
three links for every node (one for parent, one for left
subtree, one for right subtree).

▸ If we use complete binary trees, we can use instead an
array.

▸ Compact arrays vs explicit links means memory savings!

32

BINARY HEAP

Binary heaps

▸ Binary heap: the array representation of a complete heap-
ordered binary tree.

▸ Items are stored in an array such that each key is
guaranteed to be larger (or equal to) than the keys at
two other specific positions (children).

▸ Max-heap but there are min-heaps, too.

33

BINARY HEAP

Array representation of heaps

▸ Nothing is placed at index 0.

▸ Root is placed at index 1.

▸ Rest of nodes are placed
in level order.

▸ No unnecessary indices and
no wasted space because it’s
complete.

34

BINARY HEAP

Reuniting immediate family members.

▸ For every node at index , its parent is at index .

▸ Its two children are at indices and .

▸ We can travel up and down the heap by using this simple
arithmetic on array indices.

k ⌊k/2⌋

2k 2k + 1

35

BINARY HEAP

Swim/promote/percolate up/bottom up reheapify

▸ Scenario: a key becomes larger than its parent therefore it
violates the heap-ordered property.

▸ To eliminate the violation:

▸ Exchange key in child with key in parent.

▸ Repeat until heap order restored.

36

BINARY HEAP

Swim/promote/percolate up

private void swim(int k) {
 while (k > 1 && a[k/2].compareTo(a[k])<0) {
 E temp = a[k];
 a[k] = a[k/2];
 a[k/2] = temp;
 k = k/2;
 }
}

37

BINARY HEAP

Binary heap: insertion

38

▸ Insert: Add node at end in bottom
level, then swim it up.

▸ Cost: At most compares.

public void insert(E x) {  
 a[++n] = x;  
 swim(n);  
}

log n + 1

BINARY HEAP

Practice Time - Problem 3 Worksheet #16

39

▸ Insert 47 in this binary heap.

BINARY HEAP

ANSWER 3

40

BINARY HEAP

Sink/demote/top down heapify

▸ Scenario: a key becomes smaller than one (or both) of its
children’s keys.

▸ To eliminate the violation:

▸ Exchange key in parent with key in larger child.

▸ Repeat until heap order is restored.

41

BINARY HEAP

Sink/demote/top down heapify

private void sink(int k) {
 while (2*k <= n) {
 int j = 2*k;
 if (j < n && a[j].compareTo(a[j+1])<0))
 j++;
 if (a[k].compareTo(a[j])>=0))
 break;
 E temp = a[k];
 a[k] = a[j];
 a[j] = temp;
 k = j;
 }
}

42

BINARY HEAP

Practice Time - Problem 4 Worksheet #16

43

▸ Sink 7 to its appropriate place in this binary heap.

BINARY HEAP

ANSWER 4

44

BINARY HEAP

Binary heap: return (and delete) the maximum

45

▸ Delete max: Exchange root with node at end. Return it and
delete it. Sink the new root down.

▸ Cost: At most compares.2 log n

BINARY HEAP

Binary heap: delete and return maximum

46

BINARY HEAP

Practice Time - Problem 5 Worksheet #16

47

▸ Delete max (and return it!)

BINARY HEAP

ANSWER 5

48

BINARY HEAP

Things to remember about running time complexity of heaps

49

▸ Insertion is .

▸ Delete max is .

▸ Space efficiency is .

O(log n)

O(log n)

O(n)

50

TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Binary Trees, Binary Search, Heaps, and Priority Queues

▸ Binary Trees

▸ Tree traversals

▸ Binary Search

▸ Binary Heaps

▸ Priority Queues

51

PRIORITY QUEUES

Priority Queue ADT

▸ Two operations:

▸ Delete the maximum

▸ Insert

▸ Applications: load balancing and interruption handling in
OS, Huffman codes for compression, A* search for AI,
Dijkstra’s and Prim's algorithm for graph search, etc.

▸ How can we implement a priority queue efficiently?

52

PRIORITY QUEUES

Option 1: Unordered array

▸ The lazy approach where we defer doing work (deleting
the maximum) until necessary.

▸ Insert is and assumes we have the space in the array.

▸ Delete maximum is (have to traverse the entire array
to find the maximum element and exchange it with the last
element).

O(1)

O(n)

53

PRIORITY QUEUES

public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
 private Key[] pq; // elements
 private int n; // number of elements

 // set inititial size of heap to hold size elements
 public UnorderedArrayMaxPQ(int capacity) {
 pq = (Key[]) new Comparable[capacity];
 n = 0;
 }

 public boolean isEmpty() { return n == 0; }
 public int size() { return n; }
 public void insert(Key x) { pq[n++] = x; }

 public Key delMax() {
 int max = 0;
 for (int i = 1; i < n; i++){
 if (pq[max].compareTo(pq[i]) < 0) {
 max = i;
 }
 }
 Key temp = pq[max];
 pq[max] = pq[n-1];
 pq[n-1] = temp;

 return pq[--n];
 }
}

54

PRIORITY QUEUES 55

Practice Time

1. Insert P

2. Insert Q

3. Insert E

4. Delete max

5. Insert X

6. Insert A

7. Insert M

8. Delete max

9. Insert P

10. Insert L

11. Insert E

12. Delete max

▸ Given an empty array of capacity 10, perform the
following operations in a priority queue based on an
unordered array (lazy approach):

PRIORITY QUEUES 56

Answer

PRIORITY QUEUES

Option 2: Ordered array

▸ The eager approach where we do the work (keeping the
array sorted) up front to make later operations efficient.

▸ Insert is (we have to find the index to insert and shift
elements to perform insertion).

▸ Delete maximum is (just take the last element which
will be the maximum).

O(n)

O(1)

57

PRIORITY QUEUES

public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
 private Key[] pq; // elements
 private int n; // number of elements

 // set inititial size of heap to hold size elements
 public OrderedArrayMaxPQ(int capacity) {
 pq = (Key[]) (new Comparable[capacity]);
 n = 0;
 }

 public boolean isEmpty() { return n == 0; }
 public int size() { return n; }
 public Key delMax() { return pq[--n]; }

 public void insert(Key key) {
 int i = n-1;
 while (i >= 0 && key.compareTo(pq[i]) < 0) {
 pq[i+1] = pq[i];
 i--;
 }
 pq[i+1] = key;
 n++;
 }
}

58

PRIORITY QUEUES 59

Practice Time

1. Insert P

2. Insert Q

3. Insert E

4. Delete max

5. Insert X

6. Insert A

7. Insert M

8. Delete max

9. Insert P

10. Insert L

11. Insert E

12. Delete max

▸ Given an empty array of capacity 10, perform the
following operations in a priority queue based on an
ordered array (eager approach):

PRIORITY QUEUES 60

Answer

PRIORITY QUEUES

Option 3: Binary heap

▸ Will allow us to both insert and delete max in
running time.

▸ There is no way to implement a priority queue in such a
way that insert and delete max can be achieved in
running time.

▸ Priority queues are synonyms to binary heaps.

O(log n)

O(1)

61

PRIORITY QUEUES 62

Practice Time

1. Insert P

2. Insert Q

3. Insert E

4. Delete max

5. Insert X

6. Insert A

7. Insert M

8. Delete max

9. Insert P

10. Insert L

11. Insert E

12. Delete max

▸ Given an empty binary heap that represents a priority
queue, perform the following operations:

PRIORITY QUEUES 63

Answer

TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Binary Trees, Binary Search, Heaps, and Priority Queues

▸ Binary Trees

▸ Tree traversals

▸ Binary Search

▸ Binary Heaps

▸ Priority Queues

64

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Recommended Textbook:

▸ Chapter 2.4 (Pages 308-327)

▸ Website:

▸ Heaps: https://algs4.cs.princeton.edu/24pq/

▸ Visualization:

▸ Insert and ExtractMax: https://visualgo.net/en/heap

65

Worksheet
▸ Lecture 16 worksheet

https://algs4.cs.princeton.edu/24pq/
https://visualgo.net/en/heap
https://cs.pomona.edu/classes/cs62/worksheets/Lecture16_worksheet.pdf

ASSIGNED READINGS AND PRACTICE PROBLEMS

Practice Problem 1

66

▸ Given the tree below, list the nodes in order of visit in a:

▸ pre-order traversal

▸ in-order traversal

▸ post-order traversal

▸ level-order traversal

ASSIGNED READINGS AND PRACTICE PROBLEMS

Practice Problem 2

67

▸ Given the binary heap below, delete and return the max.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Practice Problem 3

68

▸ Suppose that the sequence 16, 18, 9, 15, *, 18, *, *, 9, *, 20,
*, 25, *, *, *, 17, 21, 5, *, *, *, 21, *, 5 (where a number
means insert and an asterisk means delete the maximum)
is applied to an initially empty priority queue. Give the
sequence of numbers returned by the delete maximum
operations.

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 1

69

▸ pre-order: 90, 36, 25, 2, 3, 26, 19, 17, 7, 1

▸ in-order: 2, 25, 3, 36, 19, 26, 90, 7, 17, 1

▸ post-order: 2, 3, 25, 19, 26, 36, 7, 1, 17, 90

▸ level-order: 90, 36, 17, 25, 26, 7, 1, 2, 3, 19

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 2

70

▸ Given the binary heap below, delete and return the max.

▸

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 3

71

▸ Suppose that the sequence 16, 18, 9, 15, *, 18, *, *, 9, *, 20,
*, 25, *, *, *, 17, 21, 5, *, *, *, 21, *, 5 (where a number
means insert and an asterisk means delete the maximum)
is applied to an initially empty priority queue. Give the
sequence of numbers returned by the delete maximum
operations.

▸ 18, 18, 16, 15, 20, 25, 9, 9, 21, 17, 5, 21

