
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

13: Insertion Sort

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

SORTING

Alexandra Papoutsaki
she/her/hers

TODAY’S LECTURE IN A NUTSHELL

Lecture 13: Insertion Sort

▸ Insertion sort

2

Some slides adopted from Algorithms 4th Edition or COS226

INSERTION SORT

Insertion sort

▸ Keep a partially sorted subarray on the left and an unsorted subarray on
the right.

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray and insert it
there.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 38 44 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 38 44 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 38 44 5 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 38 44 5 47 1 36 26

3 38 44 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 38 5 44 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 38 5 44 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 5 38 44 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 5 38 44 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 1 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 1 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 1 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 1 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 1 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 1 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 1 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 1 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 36 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 36 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 36 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 36 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 26 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 26 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 26 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 26 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 26 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 26 38 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 26 38 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 26 36 38 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 26 36 38 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 26 36 38 44 47

https://algs4.cs.princeton.edu/lectures/demo/21DemoInsertionSort.mov

https://algs4.cs.princeton.edu/lectures/demo/21DemoInsertionSort.mov

INSERTION SORT

In case you didn’t get this…

‣ https://www.youtube.com/watch?v=ROalU379l3U

https://www.youtube.com/watch?v=ROalU379l3U

INSERTION SORT

PRACTICE TIME - Implement insertion sort

public static <E extends Comparable<E>> void insertionSort(E[] a) {

 }

INSERTION SORT

Insertion sort

public static <E extends Comparable<E>> void insertionSort(E[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 for (int j = i; j > 0; j--) {
 if(a[j].compareTo(a[j-1])<0){
 E temp = a[j];  
 a[j]=a[j-1];  
 a[j-1]=temp;
 }
 else{
 break;
 }
 }
 }
 }
▸ Invariants: At the end of each iteration i:

▸ the array a is sorted in ascending order for the first i+1 elements a[0…i]

INSERTION SORT

Insertion sort: mathematical analysis for worst-case

public static <E extends Comparable<E>> void insertionSort(E[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 for (int j = i; j > 0; j--) {
 if(a[j].compareTo(a[j-1])<0){
 E temp = a[j];  
 a[j]=a[j-1];  
 a[j-1]=temp;
 }
 else{
 break;
 }
 }
 }
 }
▸ Comparisons: ~ , that is .

▸ Exchanges: ~ , that is .

▸ Worst-case running time is quadratic.

▸ In-place, requires almost no additional memory.

▸ Stable

0 + 1 + 2 + … + (n − 2) + (n − 1) n2 /2 O(n2)

0 + 1 + 2 + … + (n − 2) + (n − 1) n2 /2 O(n2)

INSERTION SORT

Insertion sort: average and best case

public static <E extends Comparable<E>> void insertionSort(E[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 for (int j = i; j > 0; j--) {
 if(a[j].compareTo(a[j-1])<0){
 E temp = a[j];  
 a[j]=a[j-1];  
 a[j-1]=temp;
 }
 else{
 break;
 }
 }
 }
 }
▸ Best case: comparisons and exchanges for an already sorted array.

▸ Average case: quadratic for both comparisons and exchanges ~ when sorting a randomly ordered
array.

n − 1 0

n2/4

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

INSERTION SORT

Practice Time - Worksheet

‣ Using insertion sort, sort the array with elements
[12,10,16,11,9,7].

‣ Visualize your work for every iteration of the algorithm.

INSERTION SORT

Answer

 https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec90/insertion-sort?query=insertion%20sort

https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec89/selection-sort
https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec90/insertion-sort?query=insertion%20sort

TODAY’S LECTURE IN A NUTSHELL

Lecture 13: Insertion Sort

▸ Insertion sort

66

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:
▸ Recommended Textbook:

▸ Chapter 2.1 (pages 244–262)

▸ Chapter 2.5 (Pages 338-339)

▸ Recommended Textbook Website:

▸ Elementary sorts: https://algs4.cs.princeton.edu/21elementary/

67

Worksheet
▸ Lecture 13 worksheet

Code
▸ Lecture 13 code

https://algs4.cs.princeton.edu/21elementary/
https://cs.pomona.edu/classes/cs62/worksheets/Lecture13_worksheet.pdf
https://github.com/pomonacs622024sp/code/tree/main/Lecture13

‣

▸ Show all the steps of how insertion sort would sort [E, A, S, Y, Q, U, E, S, T, I, O, N] in
the style of the following trace which visualizes the array contents just after each
insertion.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Practice Problem 1 - Recommended textbook 2.1.4

68

‣ Describe an array of n elements where the if statement in the
inner loop is always false and the loop terminates. Now
describe an array of n elements where the if statement is
always satisfied.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Practice Problem 2

69

‣ Which method runs faster for an array with all keys identical,
selection sort or insertion sort?

ASSIGNED READINGS AND PRACTICE PROBLEMS

Practice Problem 3 - Recommended textbook 2.1.6

70

‣ Which method runs faster for an array in reverse order,
selection sort or insertion sort?

ASSIGNED READINGS AND PRACTICE PROBLEMS

Practice Problem 4 - Recommended textbook 2.1.7

71

‣ Suppose that we use insertion sort on a randomly ordered
array where items have only one of three values. Is the running
time linear, quadratic, or something in between?

ASSIGNED READINGS AND PRACTICE PROBLEMS

Practice Problem 5 - Recommended textbook 2.1.8

72

‣

▸ Show all the steps of how insertion sort would sort [E, A, S, Y, Q, U, E, S, T, I, O, N] in
the style of the following trace which visualizes the array contents just after each
insertion.

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 1

73

‣ Describe an array of n elements where the if statement in the
inner loop is always false and the loop terminates. Now
describe an array of n elements where the if statement is
always satisfied.

‣ if statement always false when the array is already sorted, e.g.,
[1, 2, 3, 4]

‣ if statement always true when the array is in reverse order, e.g.,
[4, 3, 2, 1].

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 2

74

‣ Which method runs faster for an array with all keys identical,
selection sort or insertion sort?

‣ Insertion sort is faster because it will only make one
comparison per element (i.e., is linear) and will not need to
exchange any elements. Instead, selection sort will still run in
quadratic time.

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 3

75

‣ Which method runs faster for an array in reverse order,
selection sort or insertion sort?

‣ Selection sort. Big O says both are quadratic, but selection sort
needs only exchanges, while insertion sort exchangesn n2/2

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 4

76

‣ Suppose that we use insertion sort on a randomly ordered
array where items have only one of three values. Is the running
time linear, quadratic, or something in between?

‣ Quadratic. Insertion sort's running time is linear when the array
is already sorted or all elements are equal. With three possible
values the running time is quadratic.

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 5

77

