
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

12: Iterators, Comparators, Selection Sort

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

SORTING

Alexandra Papoutsaki
she/her/hers

TODAY’S LECTURE IN A NUTSHELL

Lecture 12: Iterators, Comparators, Selection Sort

▸ Iterators

▸ Comparators

▸ Sorting

▸ Selection sort

2

Some slides adopted from Algorithms 4th Edition or COS226

ITERATORS

Iterator Interface

3

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

▸ Interface that allows us to traverse a collection (i.e. data
structure) one element at a time.

public interface Iterator<E> {
 //returns true if the iterator has more elements
 //that is if next() would return an element instead of throwing an exception
 boolean hasNext();

 //returns the next element in the iteration
 //post: advances the iterator to the next value
 E next();

 //removes the last element that was returned by next
 default void remove(); //optional, better avoid it altogether

 //Performs the given action for each remaining element until all elements are processed
 default void forEachRemaining(Consumer<? super E> action);
}

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

ITERATORS

Iterator Example

4

List<Integer> myList = new ArrayList<Integer>();
//… operations on myList

Iterator<Integer> listIterator = myList.iterator();

while(listIterator.hasNext()){
 Integer elt = listIterator.next();
 System.out.println(elt);
}

ITERATORS

forEachRemaining

5

‣ Java8 introduced lambda expressions and Iterator interface now contains a new
method.

default void forEachRemaining(Consumer<? super E> action)  

‣ Performs the given action for each remaining element until all elements have been
processed or the action throws an exception.

listIterator.forEachRemaining(s -> System.out.println(s));

ITERATORS

Iterable Interface

6

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

▸ Interface that allows an object to be the target of a for-each loop:

interface Iterable<E>{
 //returns an iterator over elements of type E
 Iterator<E> iterator();

 //Performs the given action for each element of the Iterable until all elements
 //have been processed or the action throws an exception.
 default void forEach(Consumer<? super E> action);

}

public class ArrayList<E> implements Iterable<E>{...}

for(String elt: myList){
 System.out.println(elt);
}

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

ITERATORS

forEach

7

‣ Java8 introduced lambda expressions and Iterable interface now contains a new
method.

default void forEach(Consumer<? super E> action)  

‣ Performs the given action for each remaining element until all elements have been
processed or the action throws an exception.

myList.forEach(s -> System.out.println(s));

COMPARATORS

The Java Collections Framework

8

 https://en.wikipedia.org/wiki/Java_collections_framework

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://en.wikipedia.org/wiki/Java_collections_framework

ITERATORS

How to make your data structures iterable?

1. Implement Iterable interface.

2. Make a private class that implements the Iterator
interface.

3. Implement iterator() method to return an instance
of the private class.

ITERATORS

Example: making ArrayList iterable

public class ArrayList<E> implements List<E>, Iterable<E> {
 //…

public Iterator<E> iterator() {

return new ArrayListIterator();  
 }

private class ArrayListIterator implements Iterator<E> {

private int i = 0;

public boolean hasNext() {
 return i < size;

}

public E next() {

return data[i++];

}

public void remove() {
 throw new UnsupportedOperationException();

}

}

ITERATORS

Traversing ArrayList

‣ All valid ways to traverse ArrayList and print its elements one by one.

 // because it implements the Iterable interface
 for(int elt:myList) {

System.out.println(elt);
}

 // because it implements the Iterable interface
 myList.forEach(elt -> System.out.println(elt));

 // because it contains a private class that implements the Iterator interface
 Iterator<Integer> listIterator = myList.iterator();
 while(listIterator.hasNext()){

 Integer elt = listIterator.next();
 System.out.println(elt);
 }

 // because it contains a private class that implements the Iterator interface
 Iterator<Integer> listIterator = myList.iterator();
 listIterator.forEachRemaining(elt-> System.out.println(elt));

ITERATORS

PRACTICE TIME - WORKSHEET
A programmer discovers that they frequently need only the odd numbers in an ArrayList of Integers. As a result, they decided to
write a class OddIterator that implements the Iterator interface. Please help them implement the constructor and the hasNext()
and next() methods so that they can retrieve the odd values, one at a time. For example, if the ArrayList is [7, 4, 1, 3, 0], the iterator
should return the values 7, 1, and 3.  
 
 import java.util.*;

public class OddIterator implements Iterator<Integer> {

// The array whose odd values are to be enumerated  
private ArrayList<Integer> myArrayList;

//any other instance variables you might need

//An iterator over the odd values of myArrayList
public OddIterator(ArrayList<Integer> myArrayList){

}
//should run in O(n) time
public boolean hasNext(){

}  
//should run in O(1) time  
public Integer next(){
 
}

}

 public static void main(String[] args) {
 ArrayList<Integer> myList = new ArrayList<Integer>(Arrays.asList(7, 4, 1, 3, 0));
 OddIterator oi = new OddIterator(myList);
 while(oi.hasNext()){
 System.out.println(oi.next());
 }
 }

ITERATORS

PRACTICE TIME - ANSWER
 import java.util.*;

public class OddIterator implements Iterator<Integer> {

// The array whose odd values are to be enumerated  
private ArrayList<Integer> myArrayList;

//any other instance variables you might need
int counter;

//An iterator over the odd values of myArrayList
public OddIterator(ArrayList<Integer> myArrayList){
 this.myArrayList = myArrayList;
 counter = 0;
}

//runs in O(n) time
public boolean hasNext(){

for (int i=counter; i<myArrayList.size(); i++){
 if(myArrayList.get(i)%2 == 1){
 counter = i;
 return true;
 }
 }
 return false;
}  
 

 
//runs in O(1) time  
public Integer next(){
 return myArrayList.get(counter++);  
}

}

TODAY’S LECTURE IN A NUTSHELL

Lecture 12: Iterators, Comparators, Selection Sort

▸ Iterators

▸ Comparators

▸ Selection sort

14

COMPARATORS

Comparable

▸ Interface with a single method that we need to implement: public int
compareTo(T that)

▸ Implement it so that v.compareTo(w):

▸ Returns >0 if v is greater than w.

▸ Returns <0 if v is smaller than w.

▸ Returns 0 if v is equal to w.

▸ Corresponds to natural ordering.

▸ Java classes such as Integer, Double, String, File all implement
Comparable.

COMPARATORS

Comparator

▸ Sometimes the natural ordering is not the type of ordering we want.

▸ Comparator is an interface which allows us to dictate that kind of
ordering we want by implementing the method:
public int compare(T this, T that)

▸ Implement it so that compare(v, w):

▸ Returns >0 if v is greater than w.

▸ Returns <0 if v is smaller than w.

▸ Returns 0 if v is equal to w.

COMPARATORS

Sorting Collections

‣ Collections class contains a sort method:

‣ Collections.sort(list)

‣ If collection's elements do not implement the
Comparable, throws ClassCastException.

COMPARATORS

Alternative Sorting of Collections

‣ Collections.sort(list, someComparator);

‣ If collection's elements do not implement Comparable
or cannot be compared with Comparator, throw
ClassCastException.

COMPARATORS

Example - Employee

public class Employee implements Comparable<Employee> {

 private int id;
 private String name;
 private int salary;

 public Employee(int id, String name, int salary) {
 this.id = id;
 this.name = name;
 this.salary = salary;
 }

 public int compareTo(Employee e) {
 if (this.id < e.id) {
 return -1;
 } else if (this.id > e.id) {
 return 1;
 } else
 return 0;
 // return Integer.valueOf(this.id).compareTo(Integer.valueOf(e.id));
 // return Integer.compare(this.id, e.id);

 }

 public static Comparator<Employee> nameComparator = new Comparator<Employee>() {
 public int compare(Employee e1, Employee e2) {
 return e1.name.compareTo(e2.name);
 }
 };

 public static Comparator<Employee> salaryComparator(){
 return (Employee e1, Employee e2) -> Integer.compare(e1.salary, e2.salary);
 }

 public String toString() {
 return "Name: " + name + " ID: " + id + " Salary: " + salary;
 }

https://stackoverflow.com/questions/2266827/when-to-use-comparable-and-comparator

https://stackoverflow.com/questions/2266827/when-to-use-comparable-and-comparator

COMPARATORS

PRACTICE TIME - Worksheet

 public static void main(String[] args) {

 Employee e1 = new Employee(5, "Yash", 100000);
 Employee e2 = new Employee(8, "Tharun", 25000);
 Employee e3 = new Employee(4, "Yush", 10000);
 List<Employee> list = new ArrayList<Employee>();
 list.add(e1);
 list.add(e2);
 list.add(e3);

 System.out.println(list);

 Collections.sort(list);
 System.out.println(list);

 Collections.sort(list, Employee.nameComparator);
 System.out.println(list);

 Collections.sort(list, Employee.salaryComparator());
 System.out.println(list);

 }

https://stackoverflow.com/questions/2266827/when-to-use-comparable-and-comparator

https://stackoverflow.com/questions/2266827/when-to-use-comparable-and-comparator

COMPARATORS

PRACTICE TIME - Answer

 public static void main(String[] args) {

 Employee e1 = new Employee(5, "Yash", 100000);
 Employee e2 = new Employee(8, "Tharun", 25000);
 Employee e3 = new Employee(4, "Yush", 10000);
 List<Employee> list = new ArrayList<Employee>();
 list.add(e1);
 list.add(e2);
 list.add(e3);

 System.out.println(list);
 //[Name: Yash ID: 5 Salary: 100000, Name: Tharun ID: 8 Salary: 25000, Name: Yush ID: 4 Salary: 10000]

 Collections.sort(list);
 System.out.println(list);
 //[Name: Yush ID: 4 Salary: 10000, Name: Yash ID: 5 Salary: 100000, Name: Tharun ID: 8 Salary: 25000]

 Collections.sort(list, Employee.nameComparator);
 System.out.println(list);
 //[Name: Tharun ID: 8 Salary: 25000, Name: Yash ID: 5 Salary: 100000, Name: Yush ID: 4 Salary: 10000]

 Collections.sort(list, Employee.salaryComparator());
 System.out.println(list);
 //[Name: Yush ID: 4 Salary: 10000, Name: Tharun ID: 8 Salary: 25000, Name: Yash ID: 5 Salary: 100000]

 }

https://stackoverflow.com/questions/2266827/when-to-use-comparable-and-comparator

https://stackoverflow.com/questions/2266827/when-to-use-comparable-and-comparator

TODAY’S LECTURE IN A NUTSHELL

Lecture 12: Iterators, Comparators, Selection Sort

▸ Iterators

▸ Comparators

▸ Sorting

▸ Selection sort

22

SORTING

Why study sorting?

▸ It’s more common than you think: e.g., sorting flights by
price, contacts by last name, files by size, emails by day
sent, neighborhoods by zipcode, etc.

▸ Good example of how to compare the performance of
different algorithms for the same problem.

▸ Some sorting algorithms relate to data structures.

▸ Sorting your data will often be a good starting point when
solving other problems (keep that in mind for interviews).

SORTING

How many different algorithms for sorting can there be?

▸ Adaptive
heapsort

▸ Bitonic sorter

▸ Block sort

▸ Bubble sort

▸ Bucket sort

▸ Cascade
mergesort

▸ Cocktail sort

▸ Comb sort

▸ Flashsort

▸ Gnome sort

▸ Heapsort

▸ Insertion sort

▸ Library sort

▸ Mergesort

▸ Odd-even sort

▸ Pancake sort

▸ Quicksort

▸ Radixsort

▸ Selection sort

▸ Shell sort

▸ Spaghetti sort

▸ Treesort

▸ …

SORTING

Definitions

▸ Sorting: the process of arranging elements of a collection in non-
decreasing order (e.g., numerically or alphabetically).

▸ Key: assuming that an element consists of multiple components, the key is
the property based on which we sort elements.

▸ Examples: elements could be books and potential keys are the title or
the author which can be sorted alphabetically or the ISBN which can be
sorted numerically.

▸ Let’s say we want to sort an array of objects of type T.

▸ Our class T should implement the Comparable interface and we will
need to implement the compareTo method.

n

SORTING

Two useful abstractions

▸ We will refer to data only through comparisons and
exchanges.

▸ Comparisons: Is v less than w?

 v.compareTo(w) < 0;

▸ Exchanges: swap element in array a[] at index i with the one
at index j.
T temp = a[i];
a[i]=a[j];
a[j]=temp;

SORTING

Rules of the game - Cost model

▸ Sorting cost model: we count compares and exchanges. If
a sorting algorithm does not use exchanges, we count
array accesses.

▸ There are other types of sorting algorithms where they are
not based on comparisons (e.g., radixsort). We will not see
these in CS62 but stay tuned for CS140.

SORTING

Rules of the game - Memory usage

▸ Extra memory: often as important as running time. Sorting
algorithms are divided into two categories:

▸ In place: use constant or logarithmic extra memory,
beyond the memory needed to store the elements to be
sorted.

▸ Not in place: use linear auxiliary memory.

SORTING

Rules of the game - Stability

▸ Stable: sorting algorithms that sort repeated elements in
the same order that they appear in the input.

https://en.wikipedia.org/wiki/Sorting_algorithm#/media/File:Sorting_stability_playing_cards.svg

https://en.wikipedia.org/wiki/Sorting_algorithm#/media/File:Sorting_stability_playing_cards.svg

TODAY’S LECTURE IN A NUTSHELL

Lecture 12: Iterators, Comparators, Selection Sort

▸ Iterators

▸ Comparators

▸ Sorting

▸ Selection sort

30

SELECTION SORT

Selection sort

▸ Divide the array in two parts: a sorted subarray on the left and an
unsorted on the right.

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

SELECTION SORT

Selection sort

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 44 38 5 47 3 36 26

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 44 38 5 47 3 36 26

1 44 38 5 47 3 36 26

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 38 5 47 44 36 26

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 38 5 47 44 36 26

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 38 5 47 44 36 26

SELECTION SORT

Selection sort

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 38 47 44 36 26

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 38 47 44 36 26

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 38 47 44 36 26

SELECTION SORT

Selection sort

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 47 44 36 38

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 47 44 36 38

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 47 44 36 38

SELECTION SORT

Selection sort

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 44 47 38

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 44 47 38

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

1 3 5 26 36 44 47 38

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 47 44

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 47 44

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

1 3 5 26 36 38 47 44

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 44 47

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 44 47

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

1 3 5 26 36 38 44 47

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 44 47

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 44 47

https://algs4.cs.princeton.edu/lectures/demo/21DemoSelectionSort.mov

https://algs4.cs.princeton.edu/lectures/demo/21DemoSelectionSort.mov

SELECTION SORT

PRACTICE TIME - Implement Selection sort

public static <E extends Comparable<E>> void selectionSort(E[] a)
{

}

SELECTION SORT

Selection sort

public static <E extends Comparable<E>> void selectionSort(E[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 int min = i;
 for (int j = i+1; j < n; j++) {
 if (a[j].compareTo(a[min])<0){
 min = j;
 }
 }
 E temp = a[i];  
 a[i]=a[min];  
 a[min]=temp;
 }
 }
▸ Invariants: At the end of each iteration i:

▸ the array a is sorted in ascending order for the first i+1 elements a[0…i]

▸ no entry in a[i+1…n-1] is smaller than any entry in a[0…i]

 At iteration i←

 Find the index min of the
smallest remaining array
←

 swap a[i] and a[min]←

SELECTION SORT

Selection sort: mathematical analysis for worst-case

public static <E extends Comparable<E>> void selectionSort(E[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 int min = i;
 for (int j = i+1; j < n; j++) {
 if (a[j].compareTo(a[min])<0){
 min = j;
 }
 }
 E temp = a[i];  
 a[i]=a[min];  
 a[min]=temp;
 }
 }

▸ Comparisons: ~ , that is .

▸ Exchanges: or , making it useful when exchanges are expensive.

▸ Running time is quadratic, even if input is sorted.

▸ In-place, requires almost no additional memory.

▸ Not stable, think of the array [5_a, 3, 5_b, 1] which will end up as [1, 3, 5_b, 5_a].

1 + 2 + … + (n − 2) + (n − 1) n2 /2 O(n2)

n O(n)

SELECTION SORT

Practice Time - Worksheet

‣ Using selection sort, sort the array with elements
[12,10,16,11,9,7].

‣ Visualize your work for every iteration of the algorithm.

SELECTION SORT

Answer

https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec89/selection-sort

https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec89/selection-sort

TODAY’S LECTURE IN A NUTSHELL

Lecture 12: Iterators, Comparators, Selection Sort

▸ Iterators

▸ Comparators

▸ Selection sort

62

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:
▸ Recommended Textbook:

▸ Chapter 2.1 (pages 244–262)

▸ Chapter 2.5 (Pages 338-339)

▸ Recommended Textbook Website:

▸ Elementary sorts: https://algs4.cs.princeton.edu/21elementary/

▸ Oracle Documentation:

▸ Comparable: https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

▸ Comparator: https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

63

Worksheet
▸ Lecture 12 worksheet

Code
▸ Lecture 12 code

https://algs4.cs.princeton.edu/21elementary/
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html
https://cs.pomona.edu/classes/cs62/worksheets/Lecture12_worksheet.pdf
https://github.com/pomonacs622024sp/code/tree/main/Lecture12

ASSIGNED READINGS AND PRACTICE PROBLEMS

Practice Problem 1 - Recommended textbook 2.1.1
▸ Show all the steps of how selection sort would sort [E, A, S, Y, Q, U, E, S, T, I, O, N] in

the style of the following trace which visualizes the array contents just after each
exchange.

64

ASSIGNED READINGS AND PRACTICE PROBLEMS

Practice Problem 2 - Recommended textbook 2.1.2
▸ What is the maximum number of exchanges involving any particular element

during selection sort? What is the average number of exchanges involving one
specific element x?

65

ASSIGNED READINGS AND PRACTICE PROBLEMS

Practice Problem 3 - Recommended textbook 2.1.3
▸ Give an example of an array of n elements that maximizes the number of times the

test a[j].compareTo(a[min])<0 succeeds (and, therefore, min gets updated)
during the operation of selection sort.

66

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 1
▸ Show all the steps of how selection sort would sort [E, A, S, Y, Q, U, E, S, T, I, O, N] in

the style of the following trace which visualizes the array contents just after each
exchange.

67

▸ What is the maximum number of exchanges involving any particular element during
selection sort? What is the average number of exchanges involving one specific
element x?

▸ The maximum number of exchanges is n. See the example below:

▸ The average number of exchanges for a specific element is exactly 2, because there
are exactly n exchanges and n items (and each exchange involves two items).

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 2

68

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 3
▸ Give an example of an array of n elements that maximizes the number of times the

test a[j].compareTo(a[min])<0 succeeds (and, therefore, min gets updated)
during the operation of selection sort.

▸ Any array in reverse order would do, for example, [6, 5, 4, 3, 2, 1].

69

