
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

11: Stacks and Queues

BASIC DATA STRUCTURES

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Alexandra Papoutsaki
she/her/hers

Today, we will talk about stacks and queues, the last of the basic data structures.

TODAY’S LECTURE IN A NUTSHELL

Lecture 11: Stacks and Queues

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

2

Some slides adopted from Algorithms 4th Edition and Oracle tutorials

Let's start with stacks. You already have some experience with them through the Calculator assignment.

STACKS

Stacks

3

‣ Dynamic linear data structures.
‣ Elements are inserted and removed following the LIFO paradigm.
‣ LIFO: Last In, First Out.
‣ Remove the most recent element.

‣ Similar to lists, there is a sequential nature to the data.

‣ Metaphor of cafeteria plate dispenser.
‣ Want a plate? Pop the top plate.
‣ Add a plate? Push it to make it the new top.
‣ Want to see the top plate? Peek.
‣ We want to make push and pop as time efficient as possible.

Stacks are dynamic linear data structures that follow the LIFO paradigm: The element that was last in is the first one to go out. Similar to lists, there is a sequential nature
to the data. You can think of stacks as a metaphor for the cafeteria plate dispenser. If you want a plate you pop (that is remove) the top plate. If you want to add a plate,
you push it to the top and it becomes the new top of the stack. If you just want to see the top plate, you peek. It makes sense that we want to make the push and pop
operations as efficient as possible.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

STACKS

Example of stack operations

4

push To be or not to - be - - that - - - is

pop to be not that or be

To

be

To
be
or

To
be
or
not

To
be
or
not
to

To
be
or
not

To
be
or
not

To
be
or
not

To
be
or

To
be
or
that

To
be
or

To
be

To To
is

To
be

push to top pop from top

Out
First
In
Last

Here is an example of how we visualize the stack for a series of push and pop operations.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

STACKS

Implementing stacks with ArrayLists

5

‣ Where should the top go to make push and pop as efficient as
possible?

‣ The end/rear represents the top of the stack.
‣ To push an element add(E element).
‣ Adds at the end. Amortized .

‣ To pop an element remove().
‣ Removes and returns the element from the end. Amortized .

‣ To peek get(size()-1).
‣ Retrieves the last element. .

‣ If the front/beginning were to represent the top of the stack, then:
‣ Push, pop would be and peek .

O+(1)

O+(1)

O(1)

O(n) O(1)

What are our choices when it comes to implementing stacks? One option is that we could use arrayLists. If our goal is to make push and pop as efficient as possible,
where should the top be? We will use the end/read to represent the stack. That means that pushing an element will be done by calling add and that will have amortized
O+(1) running time. To pop an element, we will use remove which will remove and return the element from the end which is again amortized O+(1). To peek, we will use
get at the last index which will be done in constant time. If we were to use the front as the top of the stack, then both push and pop would be O(n) and peek O(1). Bad
idea.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

STACKS

Implementing stacks with singly linked lists

6

‣ Where should the top go to make push and pop as efficient as
possible?

‣ The head represents the top of the stack.
‣ To push an element add(E element).
‣ Adds at the head. .

‣ To pop an element remove().
‣ Removes and retrieves from the head. .

‣ To peek get(0).
‣ Retrieves the head. .

‣ If the last node were to represent the top of the stack, then:
‣ Push, pop, peek would all be .

O(1)

O(1)

O(1)

O(n)

What if we want to implement stacks using singly linked lists? The top of the stack will be the head node. To push, we will call the add method which adds at the head
and takes constant time. To pop an element we will all remove which will remove the head again in constant time. Get is also constant. If we were to choose the last node
as the top of the stack, then push, pop, and peek would all be linear.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

STACKS

Implementing stacks with doubly linked lists

7

‣ Where should the top go to make push and pop as efficient as possible?
‣ The head represents the top of the stack.
‣ To push an element addFirst(E element).
‣ Adds at the head. .

‣ To pop an element removeFirst().
‣ Removes and retrieves from the head. .

‣ To peek get(0).
‣ Retrieves the head’s element. .

‣ If the tail were to represent the top of the stack, we’d need to use
addLast(E element), removeLast(), and get(size()-1) to have

 complexity.
‣ Guaranteed constant performance but memory overhead with pointers.

O(1)

O(1)

O(1)

O(1)

How about doubly linked lists? We could choose the head to represent the top of the stack. Then pushing would call addFirst in constant time. popping would remove
the head by calling removeFirst in O(1). To peek we would get the 0-th index in O(1). We could also do the same with using the tail as the top of the stack again in
constant time. How do linked lists compare to array lists? Guaranteed constant performance for push/pop/peek if implemented as we have discussed, but unnecessary
memory overhead with extra pointers.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

STACKS

Implementation of stacks

8

‣ Stack.java: simple interface with push, pop, peek, isEmpty,
and size methods.

‣ ArrayListStack.java: for implementation of stacks with
ArrayLists. Must implement methods of Stack interface.

‣ LinkedStack.java: for implementation of stacks with singly
linked lists. Must implement methods of Stack interface.

I highly encourage you to look into the following three files linked at the end of the presentation. Stack is an interface with five abstract methods, push, pop, peek,
isEmpty, and size. ArrayListStack and LinkedStack both implement this interface and provide alternative implementations of stacks using array lists or linked lists
respectively.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 11: Stacks and Queues

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

9

Whenever you hear about stacks, chances are you will also hear about queues, a mirrored concept.

QUEUES

Queues

10

‣ Dynamic linear data structures.
‣ Elements are inserted and removed following the FIFO paradigm.
‣ FIFO: First In, First Out.
‣ Remove the least recent element.

‣ Similar to lists, there is a sequential nature to the data.

‣ Metaphor of a line of people waiting to buy tickets.
‣ Just arrived? Enqueue person to the end of line.
‣ First to arrive? Dequeue person at the top of line.
‣ We want to make enqueue and dequeue as time efficient as

possible.

A queue is a dynamic linear data structure that follows the FIFO paradigm. The first element to be inserted will be the first one to be removed. It's like a queue/line of
people waiting to buy a ticket. When we add an element to the queue, we say we enqueue it. When we remove it, we dequeue it. As always, we want to make these
basic operations as time efficient as possible.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

QUEUES

Example of queue operations

11

enqueue To be or not to - be - - that - - - is

dequeue To be or not to be

To

be

or
be
To

not
or
be
To

to be
to
not
or

be
to
not

that
be
that that is

that
be
To

dequeue from beginning

enqueue at end

Out
First
In

First

not
or
be
To

not
or
be

to be
to
not
or

be
to
not

be
to

that

This is an example of how enqueuing and dequeuing works. Note that the visualization of queues here is vertical but they are often presented horizontally.

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

QUEUES

Implementing queue with ArrayLists

12

‣ Where should we enqueue and dequeue elements?
‣ To enqueue an element add() at the end of arrayList.

Amortized .
‣ To dequeue an element remove(0). .
‣ What if we add at the beginning and remove from end?
‣ Now dequeue is cheap () but enqueue becomes

expensive ().

O+(1)
O(n)

O+(1)
O(n)

Let's think how we could implement the concept of a queue with an array list. We can enqueue an element by using add which would append it to the end of the array
list. This will result in amortized O+(1). Then we would have to dequeue the first element which would be O(n) (since we need to shift all elements to the left). We could
dequeue by removing from the end (amortized O+(1) but now enqueueing would be expensive O(n).

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

QUEUES

Implementing queue with singly linked list

13

‣ Where should we enqueue and dequeue elements?
‣ To enqueue an element add() at the head of SLL ().
‣ To dequeue an element remove(size()-1) ().

‣ What if we add at the end and remove from beginning?
‣ Now dequeue is cheap () but enqueue becomes

expensive ().
‣ for both if we have a tail pointer.
‣ enqueue at the tail, dequeue from the head.
‣ Simple modification in code, big gains!
‣ Version that recommended textbook follows.

O(1)
O(n)

O(1)
O(n)

O(1)

What about using singly linked lists? We can enqueue by adding the element to the head which can be done in constant time. To dequeue, we would have to resize the
last element which is done in linear time. What if we flip them by enqueuing at the end and dequeuing from the beginning? Now dequeue is cheap (constant) but enqueue
becomes expensive (linear). Here is a neat idea. If we add a tail pointer, we can enqueue at the tail and dequeue from the head (Why not the other way around?). This is a
tiny modification in our code but it has huge gains!

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

QUEUES

Implementing queue with doubly linked list

14

‣ Where should we enqueue and dequeue elements?
‣ To enqueue an element addLast() at the tail of DLL ().
‣ To dequeue an element removeFirst() ().
‣ What if we add at the head and remove from tail?
‣ Both are !

‣ A lot of extra pointers! Also, in practice, "jumping" around
the memory can increase significantly the running time.

O(1)
O(1)

O(1)

Let's now think about doubly linked lists. We could enqueue at the tail and dequeue at the head in constant time. Or flip them and again we would do it in constant time.
Why might we not prefer this option? Firstly, dlls require a lot of extra pointers! Also in practice "jumping" around the memory can increase significantly the running time.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

QUEUE

Implementation of queues

15

‣ Queue.java: simple interface with enqueue, dequeue, peek,
isEmpty, and size methods.

‣ ArrayListQueue.java: for implementation of queues with
ArrayLists. Must implement methods of Queue interface.

‣ LinkedQueue.java: for implementation of queues with
doubly linked lists. Must implement methods of Queue
interface.

Please make sure you review the following three files linked at the end of the presentation. Queue is an interface with five abstract methods, enqueue, dequeue, peek,
isEmpty, and size. ArrayListQueue and LinkedQueue both implement this interface and provide alternative implementations of queues using array lists or linked lists
respectively.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 11: Stacks and Queues

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

16

Let's talk a bit about the applications of stacks and queues.

APPLICATIONS

Stack applications

17

‣ Java Virtual Machine.
‣ Basic mechanisms in compilers, interpreters (see CS101).
‣ Back button in browser.
‣ Undo in word processor.
‣ Postfix expression evaluation.

Stacks appear a lot in programming languages and compilers. Think for example the call stack of methods. The back button in your favorite browser is essentially a stack
that allows you to pop the latest website you have visited. Similarly, the undo button in Google Docs and Microsoft Word is a stack. And of course, as you know now by
the Calculator assignment, you can use a stack to build a postfix expression evaluator.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

APPLICATIONS

Postfix expression evaluation example

18

Example: (52 - ((5 + 7) * 4) ⇒ 52 5 7 + 4 * -

7
→ → →

5 5

52 push(52) 52 push(5) 52 push(7)

v1=pop()=7 4 v1=pop()=4

12 v2=pop()=5 → 12 → 48 v2=pop()=12

52 push(v2+v1)=push(12) 52 push(4) 52 push(v2*v1)=48

 v1=pop()=48
 v2=pop()=52 → peek()=4
 4 push(v2-v1)=4

This is an example of how a postfix expression would be evaluated using a stack.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

APPLICATIONS

Queue applications

19

‣ Spotify playlist.
‣ Data buffers (netflix, Hulu, etc.).
‣ Asynchronous data transfer (file I/O, sockets).
‣ Requests in shared resources (printers).
‣ Traffic analysis.
‣ Waiting times at calling center.

Queues are very common in applications that have to do with streaming, e.g., Spotify, netflix, hulu etc. Printers also are based off queues. Any traffic analysis, airport
control, waiting times at a calling center, are all off based queues.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 11: Stacks and Queues

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

20

Let's now see what built-in classes Java Collections offer for stacks and queues.

JAVA COLLECTIONS

The Java Collections Framework

21

As a reminder, here is an overview of the Java collections framework.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

JAVA COLLECTIONS

Deque in Java Collections

22

https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html

▸ Do not use Stack. Deprecated class.

▸ Queue is an interface…

▸ It’s recommended to use the Deque interface instead.

▸ Double-ended queue (can add and remove from either end).

 java.util.Deque;

 public interface Deque<E> extends Queue<E>
▸ You can choose between LinkedList and ArrayDeque

implementations.

▸Deque deque = new ArrayDeque(); //preferable

Things are a bit muddy. It used to be the case we would use the class Stack but it is no longer recommended. Queue on the other hand is an interface. Instead, we are
recommended to use the Deque (deck) interface, which represents a double-ended queue and can be used to either make a stack or a queue. You can choose between
LinkedList and ArrayDeque implementations. Experiments have shown that ArrayDeque is actually faster in practice despite the theoretical arguments about linked lists'
superiority.

https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 11: Stacks and Queues

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

23

And that's all for today.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:
▸ Oracle’s guides:

▸ Collections: https://docs.oracle.com/javase/tutorial/collections/intro/index.html

▸ Deque: https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html

▸ ArrayList: https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

▸ Recommended Textbook:

▸ Chapter 1.3 (Page 126–157)

▸ Recommended Textbook Website:

▸ Stacks and Queues: https://algs4.cs.princeton.edu/13stacks/

24

Practice Problems:
▸ 1.3.2–1.3.8, 1.3.32–1.3.33

Code
▸ Lecture 11 code

Make sure you review the code!

https://docs.oracle.com/javase/tutorial/collections/intro/index.html
https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://algs4.cs.princeton.edu/13stacks/
https://github.com/pomonacs622024sp/code/tree/main/Lecture11

