
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

11: Stacks and Queues

BASIC DATA STRUCTURES

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Alexandra Papoutsaki
she/her/hers

TODAY’S LECTURE IN A NUTSHELL

Lecture 11: Stacks and Queues

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

2

Some slides adopted from Algorithms 4th Edition and Oracle tutorials

STACKS

Stacks

3

‣ Dynamic linear data structures.
‣ Elements are inserted and removed following the LIFO paradigm.
‣ LIFO: Last In, First Out.
‣ Remove the most recent element.

‣ Similar to lists, there is a sequential nature to the data.

‣ Metaphor of cafeteria plate dispenser.
‣ Want a plate? Pop the top plate.
‣ Add a plate? Push it to make it the new top.
‣ Want to see the top plate? Peek.
‣ We want to make push and pop as time efficient as possible.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

STACKS

Example of stack operations

4

push To be or not to - be - - that - - - is

pop to be not that or be

To

be

To
be
or

To
be
or
not

To
be
or
not
to

To
be
or
not

To
be
or
not

To
be
or
not

To
be
or

To
be
or
that

To
be
or

To
be

To To
is

To
be

push to top pop from top

Out
First
In
Last

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

STACKS

Implementing stacks with ArrayLists

5

‣ Where should the top go to make push and pop as efficient as
possible?

‣ The end/rear represents the top of the stack.
‣ To push an element add(E element).
‣ Adds at the end. Amortized .

‣ To pop an element remove().
‣ Removes and returns the element from the end. Amortized .

‣ To peek get(size()-1).
‣ Retrieves the last element. .

‣ If the front/beginning were to represent the top of the stack, then:
‣ Push, pop would be and peek .

O+(1)

O+(1)

O(1)

O(n) O(1)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

STACKS

Implementing stacks with singly linked lists

6

‣ Where should the top go to make push and pop as efficient as
possible?

‣ The head represents the top of the stack.
‣ To push an element add(E element).
‣ Adds at the head. .

‣ To pop an element remove().
‣ Removes and retrieves from the head. .

‣ To peek get(0).
‣ Retrieves the head. .

‣ If the last node were to represent the top of the stack, then:
‣ Push, pop, peek would all be .

O(1)

O(1)

O(1)

O(n)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

STACKS

Implementing stacks with doubly linked lists

7

‣ Where should the top go to make push and pop as efficient as possible?
‣ The head represents the top of the stack.
‣ To push an element addFirst(E element).
‣ Adds at the head. .

‣ To pop an element removeFirst().
‣ Removes and retrieves from the head. .

‣ To peek get(0).
‣ Retrieves the head’s element. .

‣ If the tail were to represent the top of the stack, we’d need to use
addLast(E element), removeLast(), and get(size()-1) to have

 complexity.
‣ Guaranteed constant performance but memory overhead with pointers.

O(1)

O(1)

O(1)

O(1)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

STACKS

Implementation of stacks

8

‣ Stack.java: simple interface with push, pop, peek, isEmpty,
and size methods.

‣ ArrayListStack.java: for implementation of stacks with
ArrayLists. Must implement methods of Stack interface.

‣ LinkedStack.java: for implementation of stacks with singly
linked lists. Must implement methods of Stack interface.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 11: Stacks and Queues

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

9

QUEUES

Queues

10

‣ Dynamic linear data structures.
‣ Elements are inserted and removed following the FIFO paradigm.
‣ FIFO: First In, First Out.
‣ Remove the least recent element.

‣ Similar to lists, there is a sequential nature to the data.

‣ Metaphor of a line of people waiting to buy tickets.
‣ Just arrived? Enqueue person to the end of line.
‣ First to arrive? Dequeue person at the top of line.
‣ We want to make enqueue and dequeue as time efficient as

possible.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

QUEUES

Example of queue operations

11

enqueue To be or not to - be - - that - - - is

dequeue To be or not to be

To

be

or
be
To

not
or
be
To

to be
to
not
or

be
to
not

that
be
that that is

that
be
To

dequeue from beginning

enqueue at end

Out
First
In

First

not
or
be
To

not
or
be

to be
to
not
or

be
to
not

be
to

that

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

QUEUES

Implementing queue with ArrayLists

12

‣ Where should we enqueue and dequeue elements?
‣ To enqueue an element add() at the end of arrayList.

Amortized .
‣ To dequeue an element remove(0). .
‣ What if we add at the beginning and remove from end?
‣ Now dequeue is cheap () but enqueue becomes

expensive ().

O+(1)
O(n)

O+(1)
O(n)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

QUEUES

Implementing queue with singly linked list

13

‣ Where should we enqueue and dequeue elements?
‣ To enqueue an element add() at the head of SLL ().
‣ To dequeue an element remove(size()-1) ().

‣ What if we add at the end and remove from beginning?
‣ Now dequeue is cheap () but enqueue becomes

expensive ().
‣ for both if we have a tail pointer.
‣ enqueue at the tail, dequeue from the head.
‣ Simple modification in code, big gains!
‣ Version that recommended textbook follows.

O(1)
O(n)

O(1)
O(n)

O(1)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

QUEUES

Implementing queue with doubly linked list

14

‣ Where should we enqueue and dequeue elements?
‣ To enqueue an element addLast() at the tail of DLL ().
‣ To dequeue an element removeFirst() ().
‣ What if we add at the head and remove from tail?
‣ Both are !

‣ A lot of extra pointers! Also, in practice, "jumping" around
the memory can increase significantly the running time.

O(1)
O(1)

O(1)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

QUEUE

Implementation of queues

15

‣ Queue.java: simple interface with enqueue, dequeue, peek,
isEmpty, and size methods.

‣ ArrayListQueue.java: for implementation of queues with
ArrayLists. Must implement methods of Queue interface.

‣ LinkedQueue.java: for implementation of queues with
doubly linked lists. Must implement methods of Queue
interface.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 11: Stacks and Queues

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

16

APPLICATIONS

Stack applications

17

‣ Java Virtual Machine.
‣ Basic mechanisms in compilers, interpreters (see CS101).
‣ Back button in browser.
‣ Undo in word processor.
‣ Postfix expression evaluation.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

APPLICATIONS

Postfix expression evaluation example

18

Example: (52 - ((5 + 7) * 4) ⇒ 52 5 7 + 4 * -

7
→ → →

5 5

52 push(52) 52 push(5) 52 push(7)

v1=pop()=7 4 v1=pop()=4

12 v2=pop()=5 → 12 → 48 v2=pop()=12

52 push(v2+v1)=push(12) 52 push(4) 52 push(v2*v1)=48

 v1=pop()=48
 v2=pop()=52 → peek()=4
 4 push(v2-v1)=4

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

APPLICATIONS

Queue applications

19

‣ Spotify playlist.
‣ Data buffers (netflix, Hulu, etc.).
‣ Asynchronous data transfer (file I/O, sockets).
‣ Requests in shared resources (printers).
‣ Traffic analysis.
‣ Waiting times at calling center.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 11: Stacks and Queues

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

20

JAVA COLLECTIONS

The Java Collections Framework

21

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

JAVA COLLECTIONS

Deque in Java Collections

22

https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html

▸ Do not use Stack. Deprecated class.

▸ Queue is an interface…

▸ It’s recommended to use the Deque interface instead.

▸ Double-ended queue (can add and remove from either end).

 java.util.Deque;

 public interface Deque<E> extends Queue<E>
▸ You can choose between LinkedList and ArrayDeque

implementations.

▸Deque deque = new ArrayDeque(); //preferable

https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 11: Stacks and Queues

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

23

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:
▸ Oracle’s guides:

▸ Collections: https://docs.oracle.com/javase/tutorial/collections/intro/index.html

▸ Deque: https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html

▸ ArrayList: https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

▸ Recommended Textbook:

▸ Chapter 1.3 (Page 126–157)

▸ Recommended Textbook Website:

▸ Stacks and Queues: https://algs4.cs.princeton.edu/13stacks/

24

Practice Problems:
▸ 1.3.2–1.3.8, 1.3.32–1.3.33

Code
▸ Lecture 11 code

https://docs.oracle.com/javase/tutorial/collections/intro/index.html
https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://algs4.cs.princeton.edu/13stacks/
https://github.com/pomonacs622024sp/code/tree/main/Lecture11

