CS62: Fall 2025 | Lecture #19 (Hashtables Pt 2) worksheet | Prof. Li

1. Fillin the blanks to implement get() in a separate chaining hash table. You can assume you have
access to the hash () method, and an instance variable called table which is an array of Nodes,
where Nodes contain a key, value, and next pointer (they are Nodes in a SLL).

public Value get(Key key) {

int i = ; //hash the key
for () { //90 through linked list
if () { //if the keys match
return y //return the value
b
b

return null;

2. Insert the key-value pairs (47, 0), (3, 1), (28, 2), (14, 3), (9,4), (47,5) into an open addressing hash table
of sizem=7.
Assume the hash function is calculated as key % m.

3. Assuming m=9, insert keys 3, 9, 18, 0, 4, 36 in a quadratic probing hash table. Assume h(k) = key % m
and h(k, i) = (h(k) +i*2) % m. What is the load factor?

4. Suppose we have a separate chaining hash table of ColoredNumbers. The hashCode is the memory
location while equals() is overridden to check if the ColoredNumber’s num attributes are equal.

zero (0)
hs. (zero) ;

(G 2 W19 What can happen when we call hs.add(zero)?
A. We add another 0 to bin zero.

B. We add another 0 to bin one.
L n C. We add another 0 to some other bin.
D. We do not get a duplicate zero.
-HHH
i E E E
o] o]
-ABHEH

