
CS62 • Misc Java

Things that are boring to teach and better as reference materials

Table of contents
• Operators

• Control flow

• 2D arrays

• I/O streams

• Exceptions

• Misc

• Bonus review problems

Operators

Operator precedence
Operators Precedence

postfix expr++ expr--

unary ++expr --expr +expr -expr !expr

multiplicative * / %

additive + -

relational < > <= >=

logical AND &&

logical OR ||

ternary ? :

assignment `= += -= *= /= %=

Higher on the table = evaluated earlier

Unary Operators
• Unary operators require only one operand.

Operator Description Example

+
Unary plus operator; indicates positive value (not
necessary to have) int x = +1;

-
Unary minus operator; negates an expression

x = -x;

++
Increment operator; increments a value by 1

++x;

-- Decrement operator; decrements a value by 1 —x;

!
Logical complement operator; inverts the value of a
boolean

boolean success = false;
!success;

1

-1

0

-1

true

Pre vs post-fix operators
• The increment/decrement operators can be applied before (prefix) or

after (postfix) the operand.

• The code result++; and ++result; will both end in result being
incremented by one. The only difference is that the prefix version (i.e.
++result) evaluates to the incremented value, whereas the postfix
version (i.e. result++) evaluates to the original value.

• If you are just performing a simple increment/decrement, it doesn't
really matter which version you choose. But if you use this operator
in part of a larger expression, the one that you choose may make a
significant difference.

Pre vs post-fix operators example
int i = 3;
i++;
System.out.println(i); // prints i (4)
++i;		 	
System.out.println(i); // prints i (5)
System.out.println(++i); // first increments to 6 then
prints it (6)
System.out.println(i++); // first prints i (6) then
increments i to 7
System.out.println(i); // prints i (7)

Conditional operators

• The && and || operators perform Conditional-AND and Conditional-
OR operations on two boolean expressions. Remember your truth
tables!

exp1 exp2 exp1 && exp2 exp1 || exp2

`true `true `true `true

`true false false `true

false `true false `true

false false false false

Even more control flow

do-while loop

• Variant of while loop that will execute the block of code in the do code block
once, before it checks if the condition is true. It will then proceed as usual.

• Basic syntax:

do {

 // code block to be executed

} while(condition);

• Make sure your condition terminates otherwise you will enter an infinite loop.

do-while loop example

int j = 3;

do {

 System.out.println("This is the best semester ever");

 j++;

}

while(j>5);

• Will print

This is the best semester ever

even though the condition never got satisfied

break
• Exits completely out of a for, while/do-while loop.

break example

for (int l = 0; l < 10; l++) {

 if (l == 4) {

 System.out.println("I am out of here");

 break;

 }

 System.out.println(l);

}

• Will print
0
1
2
3
I am out of here

continue
• Will skip the current iteration of a for, while/do-while loop.

continue example

for (int x = 0; x < 5; x++) {

 if (x == 3) {

 System.out.println("I am skipping this step");

 continue;

 }

 System.out.println(x);

}

• Will print:
0
1
2
I am skipping this step
4

switch statement
• Use instead of writing many if-else statements.

• Evaluate expression and compare it with the values of each case

• Works with byte, short, char, int, and String.

• Basic syntax:

switch(expression) {

 case x:

 // code block

 break;

 case y:

 // code block

 break;

 default:

 // code block

}

switch example
int finger = 4;
switch (finger) {
 case 1:
 System.out.println("thumb");
 break;
 case 2:
 System.out.println("index");
 break;
 case 3:
 System.out.println("middle");
 break;
 case 4:
 System.out.println("ring");
 break;
 case 5:
 System.out.println("pinky");
 break;
 default:
 System.out.println("Not a valid number”);
}

break and default

• When Java reaches a break keyword, it breaks out of the switch block
and does not execute the rest of the code.

• You need to add a break statement otherwise you will go through all
the remaining cases!

• The default keyword specifies what code to run if there is no case
match.

What would happen if we didn’t include break?
int finger = 2;

switch (finger) {

 case 1:

 System.out.println("thumb");

 case 2:

 System.out.println("index");

 case 3:

 System.out.println("middle");

 case 4:

 System.out.println("ring");

 case 5:

 System.out.println("pinky");

 default:

 System.out.println("Not a valid number”);

}

It will print :

index

middle

ring

pinky

Not a valid number

Ternary operator
• ?: A conditional operator that is a shorthand for the if-else statement.

• Basic syntax:

variable = expression1 ? expression2: expression3

• Equivalent to:

if (expression1) {

 variable = expression2;

}

else {

 variable = expression3;

}

Ternary operator example
int n1 = 32;

int n2 = 47;

int max;

// Largest among n1 and n2

max = (n1 > n2) ? n1 : n2;

// Print the largest number

System.out.println("Maximum is = " + max);

2D arrays & for-each

Review: working with arrays
• Creating a variable to refer to an array
int[] numArray; // declares a variable to refer to an array of ints
int numArray[]; //also works but discouraged

• Creating and initializing an array
int[] numArray = new int[10]; // allocates an array for 10 integers

• Creating and initializing an array - shorthand

int[] numArray = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

Multi-dimensional arrays
• An array of arrays. Each array, will have its own set of curly braces. E.g.,

•int[][] myNumbers = { {1, 2, 3, 4}, {5, 6, 7} };

• To access the elements of a multi-dimensional array, you need first to specify the array
and then the element of the array. For example:

•System.out.println(myNumbers[1][2]); // Outputs 7

• We still count starting at 0!

• To change the value of an element in a multi-dimensional array, you have to index it as
above. For example:

•myNumbers[1][2] = 9;

•System.out.println(myNumbers[1][2]); // Outputs 9 instead of 7
https://www.w3schools.com/java/java_arrays.asp

Looping through Arrays: Using a for loop and length

• Arrays have fixed length so a for loop makes sense. E.g.,

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

for (int i = 0; i < cars.length; i++) {

 System.out.println(cars[i]);

}

• Will print

Volvo

BMW

Ford

Mazda

For-each loop
• A new way of looping through arrays that doesn’t need an iteration counter.

• Basic syntax:

for (type variableName : arrayName) {

 ...

}

• For example:

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

for (String car : cars) {

 System.out.println(car);

} //works same as before

compare to Python:
cars = [“Volvo”, “BMW”, …]
for car in cars:
 print(car)

I/O Streams

I/O streams
‣ Input stream: a stream from which a program reads its input data

‣ Output stream: a stream to which a program writes its output data

‣ Error stream: output stream used to output error messages or diagnostics

‣ Stream sources and destinations include disk files, keyboard, peripherals, memory
arrays, other programs, etc.

‣ Data stored in variables, objects and data structures are temporary and lost when the
program terminates. Streams allow us to save them in files, e.g., on disk or flash drive or
even a CD (!)

‣ Streams can support different kinds of data: bytes, characters, objects, etc.

https://docs.oracle.com/javase/tutorial/essential/io/streams.html

In Python, it was open()…
read()… write()…

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html
https://docs.oracle.com/javase/tutorial/essential/io/streams.html

Files
• Every file is placed in a directory in the file system.

• Absolute file name: the file name with its complete path and drive letter. E.g.,

• On Windows: C:\jli\somefile.txt

• On Mac/Unix: /~/jli/somefile.txt

• CAUTION: DIRECTORY SEPARATOR IN WINDOWS IS \, WHICH IS A SPECIAL
CHARACTER IN JAVA. SHOULD BE “\\” INSTEAD.

• File class: contains methods for obtaining file properties, renaming, and deleting
files. Not for reading/writing!

Writing data to a text file
• PrintWriter output = new PrintWriter(new File("filename"));

• If the file already exists, it will overwrite it. Otherwise, new file will be created.

• Invoking the constructor may throw an IOException so we will need to follow the
catch or specify rule.

• output.print and output.println work with Strings, and
primitives.

• Always close a stream!

https://docs.oracle.com/javase/7/docs/api/java/io/PrintWriter.html

Writing data to a text file
import java.io.File;
import java.io.IOException;
import java.io.PrintWriter;

public class WriteData {
 public static void main(String[] args) {

 PrintWriter output = null;
 try {
 output = new PrintWriter(new File("addresses.txt"));
 // Write formatted output to the file
 output.print("Alexandra Papoutsaki ");
 output.println(222);
 output.print(“Jingyi Li ");
 output.println(111);

 } catch (IOException e) {
 System.err.println(e.getMessage());
 } finally {
 if (output != null)
 output.close();
 }
 }
}

https://liveexample.pearsoncmg.com/html/WriteData.html

need to import relevant classes

call .print or .println to write to file

catch IOException for any errors

.close() the I/O stream

Reading data
• java.util.Scanner reads Strings and primitives and breaks input into tokens, denoted

by whitespaces.

• To read from keyboard: Scanner inputStream = new Scanner(System.in);

• String input = inputStream.nextLine();

• input is a String. If you want to convert it into a number, you will need to use the
wrapper class of the primitive you want, e.g., Integer.parseInt(input);

• To read from file: Scanner inputStream = new Scanner(new File("filename"));

• Need to close stream as before.

• inputStream.hasNext() tells us if there are more tokens in the stream.
inputStream.next() returns one token at a time.

• Variations of next are nextLine(), nextByte(), nextShort(), etc.

Reading data from a text file
import java.io.File;
import java.io.IOException;
import java.util.Scanner;

public class ReadData {
	 public static void main(String[] args) {

	 	 Scanner input = null;
	 	 // Create a Scanner for the file
	 	 try {
	 	 	 input = new Scanner(new File("addresses.txt"));

	 	 	 // Read data from a file
	 	 	 while (input.hasNext()) {
	 	 	 	 String firstName = input.next();
	 	 	 	 String lastName = input.next();
	 	 	 	 int room = input.nextInt();
	 	 	 	 System.out.println(firstName + " " + lastName + " " + room);
	 	 	 }
	 	 } catch (IOException e) {
	 	 	 System.err.println(e.getMessage());
	 	 } finally {
	 	 	 if (input != null)
	 	 	 	 input.close();
	 	 }
	 }
} https://liveexample.pearsoncmg.com/html/ReadData.html

same try…catch…finally structure

use Scanner class

close the file

use a while loop to check if file still has lines

.next() is space separated (if you want the
whole line, call .nextLine())

Full example/reference:

https://github.com/pomonacs622025sp/code/
blob/main/Lecture3/FileIOExample.java

https://github.com/pomonacs622025sp/code/blob/main/Lecture3/FileIOExample.java
https://github.com/pomonacs622025sp/code/blob/main/Lecture3/FileIOExample.java

Reading data with a buffered reader
• import java.io.FileReader;

• import java.io.BufferedReader;

FileReader fr = new FileReader(“fileToRead.txt”);

BufferedReader br = new BufferedReader(fr);

String line = br.readLine();

while ((line!= null) {

 //do something

 line = br.readLine();

}

a BufferedReader object takes a FileReader
object as input.

the .readLine() method will return null
when the file has no more lines to read, so
we can write a while loop

You’ll see this in HW3: Darwin

Exceptions

Exceptions are exceptional or unwanted events
• They are operations that disrupt the normal flow of the program. E.g.,

• wrong input, divide a number by zero, run out out of memory, ask for a file that does
not exist, etc. E.g.,

 int[] myNumbers = {1, 2, 3};

 System.out.println(myNumbers[10]); // error!

• Will print something like

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 10

and terminate the program.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

Exception terminology

• When an error occurs within a method, the method throws an
exception object that contains its name, type, and state of program.

• The runtime system looks for something to handle the exception
among the call stack, the list of methods called (in reverse order) by
main to reach the error.

• The exception handler catches the exception. If no appropriate
handler, the program terminates.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

Three major types of exception classes

• Checked Exceptions: Should follow the Catch or Specify requirement.

• errors caused by program and external circumstances and caught during compile time. E.g.,

• java.io.FileReader

• Unchecked Exceptions: Do NOT follow the Catch or Specify requirement and are caught during runtime.

• Error: the application cannot recover from. E.g.,

• java.lang.StackOverflowError (for stack)

• java.lang.OutOfMemoryError (for heap)

• RuntimeException: internal programming errors that can occur in any Java method and are
unexpected. E.g.,

• java.lang.IndexOutOfBoundsException

• java.lang.NullPointerException

• java.lang.ArithmeticException

https://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html

Useful exceptions to know
• Checked - you have to catch or specify they throw an exception

• IOException: when using file I/O stream operations.

• Unchecked - you don’t have to catch/specify them, but it can still be a good idea to do so.

• ArrayIndexOutOfBoundsException: when you try to access an array with an invalid index value

• ArithmeticException: when you perform an incorrect arithmetic operation. For example, if you
divide any number by zero.

• IllegalArgumentException: when an inappropriate or incorrect argument is passed to a
method.

• NullPointerException: when you try to access an object with the help of a reference variable
whose current value is null.

• NumberFormatException: when you pass a string to a method that cannot convert it to a number.
e.g., Integer.parseInt(“hello”)

https://stackify.com/types-of-exceptions-java/

https://stackify.com/types-of-exceptions-java/

The Catch or Specify requirement
• Code that might throw checked exceptions must be enclosed either by

• a try-catch statement that catches the exception,
 try {
 //one or more legal lines of code that could throw an
exception
 } catch (TypeOfException e) {
 System.err.println(e.getMessage());
 }

• or have the method specify that it can throw the exception. The method must
provide a throws clause that lists the exception.
method() throws Exception{
 if(some error) {
 throw new Exception();
 }
}

https://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html

Catching exceptions
method(){
 try {
 statements; //statements that could throw exception
 } catch (Exception1 e1) {
 //handle e1;
 }
 catch (Exception2 e2) {
 //handle e2;
 }
}

• If no exception is thrown, then the catch blocks are skipped.

• If an exception is thrown, the execution of the try block ends at the responsible statement.

• The order of catch blocks is important. A compile error will result if a catch block for a
more general type of error appears before a more specific one, e.g., Exception should be
after ArithmeticException.

https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.6

https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.6

finally block
• Used when you want to execute some code regardless of whether an

exception occurs or is caught

method(){
 try {
 statements; //statements that could thrown exception
 } catch (Exception1 e) {
 //handle e; catch is optional.
 }
 finally {
 //statements that are executed no matter what;
 }
}
• The finally block will execute no matter what. Even after a return.

https://docs.oracle.com/javase/tutorial/essential/exceptions/finally.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/finally.html

Misc review

The simple assignment operator

• One of the most common operators that we’ve already encountered is
the simple assignment operator “="; it assigns the value on its right to
the operand on its left. For example:

• int age = 19;

• int year = 2024;

Arithmetic operators

• Java arithmetic operators support addition, subtraction, multiplication,
division, and remainder/modulo.

Operator Description

+ Additive operator (also used for String concatenation)

- Subtraction operator

* Multiplication operator

/ Division operator

% Remainder operator

Other assignment operators

• The assignment operators +=, -=, *=, /=, and %= are a compound of
arithmetic and assignment operators.

• They operate by adding/subtracting/multiplying/dividing/taking the
remainder of the current value of the variable on the left to the value
on the right and then assigning the result to the operand on the left.
E.g.,

• num1 += num2; means num1 = num1 + num2;

Equality and relational operators
• Determine if one operand is greater than, less than, equal to, or not

equal to another operand

Operator Description

`== equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

Practice problems

Practice problems
Assume you are given the following Java code. What would be printed on your screen?

 int result = 1 + 2;
 System.out.println("1 + 2 = " + result);
 int original_result = result;

 result = result - 1;
 System.out.println(original_result + " - 1 = " + result);
 original_result = result;

 result = result * 2;
 System.out.println(original_result + " * 2 = " + result);
 original_result = result;

 result = result / 2;
 System.out.println(original_result + " / 2 = " + result);
 original_result = result;

Answer
1 + 2 = 3

3 - 1 = 2

2 * 2 = 4

4 / 2 = 2

2 + 8 = 10

10 % 7 = 3

Worksheet time!

Worksheet answers

• a. i is 11, n is 0 (since i++ evaluates first, then increments i)

• b. i is 11, n is 1 (since ++i increments i before evaluation)

Worksheet time!

• What does this print?

int n1 = 10;

int n2 = 47;

int n3 = 4;

System.out.println((n1%n3>n2%n3) ? (n1+n2):(n1-n2));

Worksheet answers

• (n1%n3>n2%n3) ? (n1+n2):(n1-n2)

• 10%4 = 2, 47%4 = 3. 2 > 3 is false, so we evaluate n1-n2, or 10-47, so it
prints -37.

• Declare and initialize an array of strings with all the classes you are taking this semester.

• Remember the word class is a reserved word, you cannot use it to name your variables.

• Write a for loop that loops through each class

• If a class is called “CS62” you need to print “CS62: This is the best class ever, no need to see
more” and break the for loop.

• We will use the equals method to compare equality among Strings.

• e.g., someString.equals(someOtherString)

• Otherwise, if a class is called “CS101”, you need to print “CS101: New CS achievement unlocked”
and continue to the next iteration.

• Otherwise, print the name of the class.

Worksheet time!

• You could have also used a regular for loop instead of a for-each loop.

String[] classes = {"PHYS32", "CS101", "ANTH51", "CS62", "IMAG2"};

for(String myClass:classes){

 if(myClass.equals(”CS62”)){

 System.out.println("CS62: This is the best class ever, no need to see more");

 break;

 }

 else if(myClass.equals(“CS101”)){

 System.out.println("CS101: New CS achievement unlocked");

 continue;

 }

 System.out.println(myClass);

}

Worksheet answers

do you need the continue
statement?

