
Checkpoint 3 study guide Searching & Graphs

Information

• Checkpoint 3 is Weds, Dec 3 in class (our last day of class).

• As usual, you can bring one hand-written (ok hand-written on tablets and then
printed) back and front sheet of paper (i.e. two pages). NO slides shrunk and
copy pasted.

• Review lecture slides along with slides on practice problems and links to code.
Go over quizzes, labs, and assignments. Use the practice problems in this
presentation. If you want to read in more depth, use the recommended
textbook (extra copies for in-lab use in the dept library)

• Practice writing code on paper.

Review

Checkpoint III Review
• LLRB Trees

• Hashing

• Graphs

• BFS/DFS

• Shortest path

• MSTs

• DAGs

• Choosing data structures

• Practice problems

• Answers

LLRBs
• Definitions, Search, Insertion for LLRBs

• Equivalence with 2-3 trees

• Performance

Hash tables
• Chapter 3.3 (Pages 458-477).

• Hashing, separate chaining, open addressing.

Summary for Dictionaries
• Worst case search and insert are for BSTs. Not great! O(n)

Ordered
Operations

Worst case Average case

Search Insert Delete Search Insert Delete

BST Yes

balanced
search trees Yes

hash tables
with

separate
chaining

No

hash tables
with linear

probing
No

n n n log n log n

log n

log n

log n log n log n log n log n

n n n 1 1 1

n n n 1 1 1

Undirected Graphs
• Chapter 4.1 (Pages 515-556).

• Definitions, representations, APIs.

• BFS.

• DFS.

• Textbook code.

• https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/Graph.java.html

• https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/DepthFirstSearch.java.html

• https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/BreadthFirstPaths.java.html

https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/Graph.java.html
https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/DepthFirstSearch.java.html
https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/BreadthFirstPaths.java.html

Directed Graphs
• Chapter 4.2 (Pages 566-594).

• Definitions, representations, APIs.

• BFS.

• DFS.

• Textbook code.

• https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/Digraph.java.html

• https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/DirectedDFS.java.html

https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/Digraph.java.html
https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/DirectedDFS.java.html

Shortest Paths
• Chapter 4.4 (Pages 638-676).

• Dijkstra’s algorithm.

• https://visualgo.net/en/sssp

https://visualgo.net/en/sssp

Minimum Spanning Trees
• Chapter 4.3 (Pages 604-629).

• Know how to apply Kruskal's and Prim's algorithms.

• https://algs4.cs.princeton.edu/43mst/

• https://visualgo.net/en/mst

https://algs4.cs.princeton.edu/43mst/
https://visualgo.net/en/mst

Problem Problem Description Solution Efficiency

paths Find a path from s to every
reachable vertex.

DFS O(V+E) time
Θ(V) space

shortest paths Find the shortest path from s
to every reachable vertex.

BFS O(V+E) time
Θ(V) space

shortest
weighted paths

Find the shortest path,
considering weights, from s to
every reachable vertex.

Dijkstra’s O(E log V) time
Θ(V) space

minimum
spanning tree

Find the minimum spanning
tree.

Prim’s O(E log V) time
Θ(V) space

minimum
spanning tree

Find the minimum spanning
tree.

Kruskal’s O(E log E) time
Θ(E) space

Directed Acyclic Graphs
• What is a DAG, topological sorting, shortest paths with negative edge weights

Problem Problem Description Solution Efficiency

topological sort Find an ordering of vertices that
respects edges of our DAG.

DFS from source nodes O(V+E) time
Θ(V) space

DAG shortest
paths

Find a SPT on a DAG. Negative
weights OK.

topological sort, then visit
vertices in that order and
relax

O(V+E) time
Θ(V) space

longest paths Find a longest paths tree on a
graph.

No good known solution
exists.

?

DAG longest
paths

Find a longest paths tree on a
DAG.

flip signs, then DAG
shortest paths, flip signs
again

O(V+E) time
Θ(V) space

Choosing data structures
• Given a word problem, what data structure (out of all the ones we’ve seen) would you

choose to solve it? (Similar to our coding interview practice lab and your final project)

• Linear data structures

• Stacks

• Heaps

• Queue vs priority queue

• Binary trees

• Binary search trees

• Hashtable

• Graphs (undirected/directed)

• etc…

Practice problems

Problem 1: LLRBs

You are given the following LLRB.

Draw the final LLRB tree and the intermediate trees and name the different elementary operations you
performed (insert, color flip, rotate left, rotate right) after you insert the key 8 in the provided LLRB.

Problem 2: Hashtables

Consider inserting the keys 25, 17, 12, 26, 27, 5, 9, 29, 11, 23 into a hash table of size using the hash
function . For each of the following questions, fill in the following hash table:

a. using open addressing and linear probing with .

b. using open addressing and quadratic probing with .

c. using separate chaining (insert in the front of the chain).

m = 11
h(k) = k % m

h(k, i) = (h(k) + i) % m

h(k, i) = (h(k) + i2) % m

0 1 2 3 4 5 6 7 8 9 10

Problem 3: Traversing Graphs

Show the adjacency matrix and
adjacency list representations of the
undirected graph above.

Run a. DFS and b. BFS starting at vertex
A assuming adjacent vertices are
returned in lexicographic order. Fill in
the table below:

v marked distTo edgeTo

A

B

C

D

E

Problem 4: Shortest Paths

Run Dijkstra’s algorithm on this graph, starting at vertex
a. Fill in the resulting distTo[] and edgeTo[] arrays
below. In the edgeTo[] column, please indicate the last
edge in the shortest path from a to every other vertex
and mark the shortest path tree.

v distTo edgeTo

a

b

c

d

e

f

g

h

i

Problem 5: Data structures

For each of the following problems, please choose the most appropriate data structure to use.

Many text editors provide the possibility for the user to undo an arbitrary number of commands. What
data structure should the implementers use to save past commands in order to provide this capability?

Stack Queue Tree Priority Queue

Some word processors collect embedded footnotes in text and print them all (in the order they appeared) at
the end of the document. Which data structure should the implementers of the word-processor use to save
the footnotes as they are encountered?

Stack Queue Tree Priority Queue

Which data structure does your computer use to save the directory structure of its file system?

Stack Queue Tree Priority Queue

Solutions

Solution to Problem 1: LLRBs

You are given the following LLRB.

Draw the final LLRB tree and the intermediate trees and name the different elementary operations you
performed (insert, color flip, rotate left, rotate right) after you insert the key 8 in the provided LLRB.

1. Insert

Solution to Problem 1: LLRBs

You are given the following LLRB.

Draw the final LLRB tree and the intermediate trees and name the
different elementary operations you performed (color flip, rotate
left, rotate right) after you insert the key 8 in the provided LLRB.

2. rotateRight(10) 3. color flip (9)

Solution to Problem 1: LLRBs

You are given the following LLRB.

Draw the final LLRB tree and the intermediate trees and name the
different elementary operations you performed (color flip, rotate
left, rotate right) after you insert the key 8 in the provided LLRB.

4. rotateLeft(4) 5. rotateRight(11)

Solution to Problem 1: LLRBs

You are given the following LLRB.

Draw the final LLRB tree and the intermediate trees and name the
different elementary operations you performed (color flip, rotate
left, rotate right) after you insert the key 8 in the provided LLRB.

6. colorFlip(9)

Done!

Solution to Problem 2a: Hashtables

▸ Consider inserting the keys 25, 17, 12, 26, 27, 5, 9, 29, 11, 23
into a hash table of size using the hash function

. For each of the following questions, fill in the
following hash table using open addressing and linear
probing with .

m = 11
h(k) = k % m

h(k, i) = (h(k) + i) % m

11 12 23 25 26 27 17 5 29 9

0 1 2 3 4 5 6 7 8 9 10

Solution to Problem 2b: Hashtables

▸ Consider inserting the keys 25, 17, 12, 26, 27, 5, 9, 29, 11, 23
into a hash table of size using the hash function

. For each of the following questions, fill in the
following hash table using open addressing and quadratic
probing with .

m = 11
h(k) = k % m

h(k, i) = (h(k) + i2) % m

11 12 23 25 26 27 17 29 5 9

0 1 2 3 4 5 6 7 8 9 10

Solution to Problem 2c: Hashtables

▸ Consider inserting the keys 25, 17, 12, 26, 27, 5, 9, 29, 11, 23
into a hash table of size using the hash function

. For each of the following questions, fill in the
following hash table using separate chaining.

m = 11
h(k) = k % m

0 1 2 3 4 5 6 7 8 9 10

11 23 25 26 5

2712

17 29 9

Solution to Problem 3a: Traversing Graphs

▸ Show the adjacency matrix and
adjacency list representations of the
undirected graph above.

▸ Run a. DFS assuming adjacent
vertices are returned in
lexicographic order.

▸ Order of visit: A, B, D, E, C

v marked edgeTo

A T -

B T A

C T A

D T B

E T B

adj list

A -> B, E, C
B -> A, D, E
C -> A
D -> B
E -> A, B

adj matrix
 A B C D E
A 0 1 1 0 1
B 1 0 0 1 1
C 1 0 0 0 0
D 0 1 0 0 0
E 1 1 0 0 0

Solution to Problem 3b: Traversing Graphs

▸ Show the adjacency matrix and
adjacency list representations of the
undirected graph above.

▸ Run b. BFS assuming adjacent
vertices are returned in
lexicographic order.

▸ Order of visit: A, B, C, E, D

v marked distTo edgeTo

A T 0 -

B T 1 A

C T 1 A

D T 2 B

E T 1 A

Solution to Problem 4: Shortest Paths

Run Dijkstra’s algorithm on this graph, starting at vertex a.
Fill in the resulting distTo[] and edgeTo[] arrays below. In
the edgeTo[] column, please indicate the last edge in the
shortest path from a to every other vertex and mark the
shortest path tree.

v distTo edgeTo

a 0 -

b 15 a

c 25 a

d 35 c

e 25 b

f 35 e

g 30 e

h 20 b

i 35 h

Solution to Problem 5: Data structures

For each of the following problems, please choose the most appropriate data structure to use.

Many text editors provide the possibility for the user to undo an arbitrary number of commands. What
data structure should the implementers use to save past commands in order to provide this capability?

Stack Queue Tree Priority Queue

Some word processors collect embedded footnotes in text and print them all (in the order they appeared) at
the end of the document. Which data structure should the implementers of the word-processor use to save
the footnotes as they are encountered?

Stack Queue Tree Priority Queue

Which data structure does your computer use to save the directory structure of its file system?

Stack Queue Tree Priority Queue

