
Lab 5: Checkpoint 1 study guide
Basic Data Structures

Checkpoint 1

Information
• Checkpoint 1 is tomorrow in class.

• You can bring a note sheet

• hand-written (ok hand-written on tablets and then printed)

• back and front sheet of paper (i.e., two pages)

• NO slides shrunk and copy pasted.

• Studying

• Review lecture slides (including practice problems) and links to code.

• Go over quizzes, labs, and assignments.

• Use the five practice problems in this presentation.

• Practice writing code on paper.

Java Basics
LECTURES 1-4

• Chapter 1.1 (Pages 8–35).

• Chapter 1.2 (Pages 64–77, 84—88, 96—99, 107).

• Quick overview of Java tutorials.

• https://docs.oracle.com/javase/tutorial/java/

• In general, review the basics of OOP and of Java so that you
are comfortable reading and writing code.

https://docs.oracle.com/javase/tutorial/java/
https://docs.oracle.com/javase/tutorial/java/

ArrayLists

• Chapter 1.3 (Pages 136-137).

• Java Oracle API https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

• Amortized and worst-case time analysis.

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Analysis of Algorithms

• Chapter 1.4 (Pages 172-205).

• Experimental analysis including doubling hypothesis: Pick two pairs of the largest
input sizes and check that the T(n)/T(n/2) is consistently expressed as some power
of 2.

• Mathematical analysis including Big O, Big Omega, and Big Theta difference

• Order of growth classifications.

• Review of running time of operations on array lists, linked lists, stacks, and queues.

Logarithms - refresher

• 𝑎𝑏 = 𝑐 → 𝑏 = log𝑎𝑐

• log𝑎𝑎 = 1, log𝑎1 = 0

• log𝑎
𝑥

𝑦
= log𝑎𝑥 − log𝑎𝑦

• log𝑎𝑥 × 𝑦 = log𝑎𝑥 + log𝑎𝑦

• log𝑎𝑥
𝑦 = 𝑦 × log𝑎𝑥

• log𝑎𝑥 =
log𝑏𝑥

log𝑏𝑎

• 𝑥log𝑎𝑦 = 𝑦log𝑎𝑥

• 𝑎log𝑎𝑥 = 𝑥

• lg𝑛! ≈ 𝑛𝑙𝑔𝑛

Summations - refresher

• ∑
𝑖=1

𝑛

𝑖 = 1 + 2+. . . +𝑛

• ∑
𝑖=1

𝑛

𝑐 = 𝑐 + 𝑐+. . . +𝑐 = 𝑛 × 𝑐, assuming c does not depend on i

• ∑
𝑖=1

𝑛

𝑐 × 𝑓𝑖 = 𝑐 × ∑
𝑖=1

𝑛

𝑓𝑖

• ∑
𝑖=1

𝑛

(𝑓𝑖 + 𝑔𝑖) = ∑
𝑖=1

𝑛

𝑓𝑖 + ∑
𝑖=1

𝑛

𝑔𝑖

• ∑
𝑖=1

𝑛

𝑖 =
𝑛(𝑛+1)

2
∼ 𝑛2

• ∑
𝑖=1

𝑛

𝑖2 =
𝑛(𝑛+1)(2𝑛+1)

6
∼ 𝑛3

• ∑
𝑖=0

𝑛

2𝑖 = 2(𝑛+1) − 1

• ∑
𝑖=0

𝑛

(
1

2
)𝑖 = 1 +

1

2
+

1

4
+. . . +

1

2𝑛
∼ 2

• ∑
𝑖=1

𝑛 1

𝑖
∼ ln𝑛

Linked Lists

• Chapter 1.3 (Pages 126-157).

• Java Oracle API https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

• Worst-case time analysis for standard operations (singly & doubly)

https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

Stacks and Queues

• Chapter 1.3 (Pages 142-146)

• Worst-case time analysis for standard operations based on the underlying
implementation (ArrayList vs Linked List)

Practice problems

Practice Problem 1

You are given the following Java code that implements a simplified version of a stack of Strings.

1. public class StringStack {

2. private String[] a;

3. private int n = 0;

4.

5. public StringStack(int size) {a = new String[size];}

6. public void push(String item) {a[n++] = item;}

7. public String pop() {return a[--n];}

8.

9. public static void main(String args[]) {

10. StringStack ss = new StringStack(10);

11. ss.push("47");

12. String s = ss.pop();

13. System.out.println(s);

14. }

15. }

In the next page, mark with an X in each of the rows what line numbers correspond to the description.

Practice Problem 1 (cont'd)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Defines a constructor

Names a class

Invokes a method
(excluding
constructor)

Initializes a local
variable

Declares an instance
variable

Creates an object

Implements an
instance method
(excl. constructor)

Implements a static
method

Applies a unary
operator

Practice Problem 2

a. For each function 𝑓(𝑛) in the table

below, please write down 𝑂(𝑓(𝑛)) in the
simplest possible form. For example, if

𝑓(𝑛) was 2𝑛, then 𝑂(𝑓(𝑛)) would be

written as 𝑂(𝑛).

b. Order the answers from part a so that
they are in increasing order of rate of
growth, i.e., write the slowest growing
function on the left (i.e. the fastest overall)
and the fastest growing on the right (i.e.
the slowest overall) with the others
between in order of growth for large

values of 𝑛.

Function Big-O

100𝑛log𝑛 + 100𝑛

𝑛3 + 50𝑛2 + 10000

10𝑛2 + 20𝑛log𝑛

212

2𝑛

30𝑛

50𝑛log𝑛 + 𝑛!

20log𝑛 + 1000

Practice Problem 3

• We will be adding a new method to the class SinglyLinkedList we built together with the
following signature: public void keep(int howMany)

• The method should modify the list so it only keeps the first howMany elements, dropping the
rest of the elements from the list. E.g., if a SinglyLinkedList myList contains 10 elements, then
executing myList.keep(6) should result in myList having only the first 6 elements of the list.

• a. Write the pre- and post-conditions (what assumptions need to be met for the method to
execute correctly and what will be true after the execution of the method, respectively) in
plain English.

• b. List at least one special case that either violates your preconditions or requires special
handling.

• c. Write the code for keep. If the preconditions are violated, you should throw an
IllegalArgumentException.

Practice Problem 4
• Fill in the following class to implement a queue

using two stacks. When elements are enqueued,
they are added to the inbox stack. During dequeue
or peek operations, elements are transferred from
the inbox stack to the outbox stack as needed.

• Here is an example of how it works:

public class TwoStackQueue<E> {

ArrayListStack<E> inbox;
ArrayListStack<E> outbox;

public TwoStackQueue() implements Queue<E>{
inbox = new ArrayListStack<E>();
outbox = new ArrayListStack<E>();

}

public int size() {
// FIX ME

}

public void enqueue(E element) {
// FIX ME

}

private void transferElements() {
// FIX ME

}

public E peek() {
// FIX ME

}

public E dequeue() {
// FIX ME

}

public boolean isEmpty(){
// FIX ME

}

public static void main(String args[]) {
TwoStackQueue<Integer> mq = new TwoStackQueue<Integer>();
System.out.println(mq.isEmpty()); //true
for (int i = 0; i < 8; i++){

mq.enqueue(i);
}
System.out.println("Size: " + mq.size());
System.out.println("Peek: " + mq.peek());
for (int i = 0; i < 8; i++) {

System.out.println(mq.dequeue()); // 0 1 2 3 4 5 6 7
}

}

}

https://stackoverflow.com/questions/69192/how-to-

implement-a-queue-using-two-stacks

inbox outbox inbox outbox

inbox outbox inbox outbox

Practice Problem 5
• For each of the following pieces of code, find the

number of times operation() is called as a function of
the input size n. Express your answer in terms of the
order of growth of the running time.

a. for (int i = 10; i < n + 5; i += 2){

operation();

}

b. for (int i = 1; i < n; i *= 2){

operation();

}

c. for (int i = 10; i < n; i++){

for (int j = 0; j < n; j += 2){

operation();

}

}

d. for (int i = 1; i <= n; i++){

for (int j = 1; j <= i; j ++)

operation();

}

}

e. for (int i = 1; i <= n; i++) {

for (int j = 1; j <= n; j += i){

operation();
}

for (int j = 1; j <= i; j++){

operation();
}

}

Solutions

Practice Problem 1 (cont'd)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Defines a constructor x

Names a class x

Invokes a method
(excluding
constructor)

x x

Initializes a local
variable x

Declares an instance
variable x x

Creates an object x x

Implements an
instance method
(excl. constructor)

x x

Implements a static
method x x x x x x

Applies a unary
operator x x

Practice Problem 2 - ANSWER

a. For each function 𝑓(𝑛) in the table below,

please write down 𝑂(𝑓(𝑛)) in the simplest

possible form. For example, if 𝑓(𝑛) was 2𝑛,

then 𝑂(𝑓(𝑛)) would be written as 𝑂(𝑛). (See
table)

b. Order the answers from part a so that they
are in increasing order of rate of growth, i.e.,
write the slowest growing function on the left (i.e.
the fastest overall) and the fastest growing on
the right (i.e. the slowest overall) with the others

between in order of growth for large values of 𝑛.

1, log𝑛, 𝑛, 𝑛log𝑛, 𝑛2, 𝑛3,2𝑛 , 𝑛!

Function Big-O

100𝑛log𝑛 + 100𝑛

𝑛3 + 50𝑛2 + 10000

10𝑛2 + 20𝑛log𝑛

212

2𝑛

30𝑛

50𝑛log𝑛 + 𝑛!

20log𝑛 + 1000

𝑛log𝑛

𝑛3

𝑛2

1

2𝑛

𝑛

𝑛!

log𝑛

Practice Problem 3 - ANSWER
• a.

• pre-condition: howMany>=0 && howMany<=size

• post-condition: list has howMany elements

• b. howMany ==0, howMany==size, howMany<0 or howMany>=size

• c. -> public void keep(int howMany) {
if (howMany > size || howMany < 0) {

throw new IllegalArgumentException();
}
if(howMany==0){

head = null;
}
else if(howMany == size){

return;
}
else{

Node finger = head;
// Traverse the list until the (howMany - 1)th element
for (int i = 0; i < howMany - 1; i++) {

finger = finger.next;
}
// Set the next of the (howMany - 1)th element to null,
// effectively cutting off the rest of the list.
finger.next = null;

}
size = howMany;

}

Practice Problem 4
Answer
• Fill in the following class to implement a queue

using two stacks. When elements are enqueued,
they are added to the inbox stack. During dequeue
or peek operations, elements are transferred from
the inbox stack to the outbox stack as needed.

• Here is an example of how it works:

https://stackoverflow.com/questions/69192/how-to-

implement-a-queue-using-two-stacks

inbox outbox inbox outbox

inbox outbox inbox outbox

public class TwoStackQueue<E> implements Queue<E>{

ArrayListStack<E> inbox;
ArrayListStack<E> outbox;

public TwoStackQueue() {
inbox = new ArrayListStack<E>();
outbox = new ArrayListStack<E>();

}

public int size() {
return inbox.size() + outbox.size();

}

public void enqueue(E element) {
inbox.push(element);

}

private void transferElements() {
while (!inbox.isEmpty()) {

outbox.push(inbox.pop());
}

}

public E peek() {
if(outbox.isEmpty()){

transferElements();
}
return outbox.peek();

}

public E dequeue() {
if(outbox.isEmpty()){

transferElements();
}
return outbox.pop();

}

public boolean isEmpty(){
return inbox.isEmpty() && outbox.isEmpty();

}
}

Practice Problem 5 (a) - ANSWER

a. for (int i = 10; i < n + 5; i += 2){
operation();

}

• operation is called (𝑛 + 5 − 10)/2 times, which is in the order of 𝑂(𝑛).

Practice Problem 5 (b) - ANSWER

b. for (int i = 1; i < n; i *= 2){
operation();

}

• The number of steps needed to get from 1 to n by doubling is log2𝑛. The order of growth is 𝑂(log𝑛)---the base is
not important.

Practice Problem 5 (c) - ANSWER

c. for (int i = 10; i < n; i++){
for (j = 0; j < n; j += 2){

operation();
}

}

• operation is called (𝑛 − 10) ×
𝑛

2
=

1

2
𝑛2 − 5𝑛 times, therefore the order of growth is 𝑂(𝑛2).

Practice Problem 5 (d) - ANSWER

d. for (int i = 1; i <= n; i++){
for (j = 1; j <= i; j ++)

operation();
}

}

• For i = 1, the inner loop is called 1 times

• For i = 2, the inner loop is called 2 times

• ...

• For i = n, the inner loop is called n times

• Overall, 1+2+...+n = 1 + 2+. . . +𝑛 =
𝑛(𝑛+1)

2
∼ 𝑂(𝑛2)

Practice Problem 5 (e) - ANSWER

e. for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j += i){

operation();
}
for (int j = 1; j <= i; j++){

operation();
}

}

• Note that the two inner for loops are independent .

• The first inner loop combined with outer loop run in the order of 𝑂(𝑛log𝑛).

• When i=1, the inner loop performs n=n/1 operations

• When i=2, the inner loop performs n/2 operations

• ...

• When i=n, the inner loop performs 1 = n/n operations

• Overall,
𝑛

1
+

𝑛

2
+. . .

𝑛

𝑛
= ∑

𝑖=1

𝑛 𝑛

𝑖
= 𝑛 × ∑

𝑖=1

𝑛 1

𝑖
∼ 𝑛ln𝑛 ∼ 𝑂(𝑛log𝑛)

• The second inner loop combined with outer loop run in the order of 𝑂(𝑛2) (look at problem d).

• Overall, the order of growth for the entire code fragment is 𝑂(𝑛log𝑛 + 𝑛2) = 𝑂(𝑛2)

	Slide 1: Lab 5: Checkpoint 1 study guide
	Slide 2: Checkpoint 1
	Slide 3: Information
	Slide 4: Java Basics
	Slide 5: ArrayLists
	Slide 6: Analysis of Algorithms
	Slide 7: Logarithms - refresher
	Slide 8: Summations - refresher
	Slide 9: Linked Lists
	Slide 10: Stacks and Queues
	Slide 11: Practice problems
	Slide 12: Practice Problem 1
	Slide 13: Practice Problem 1 (cont'd)
	Slide 14: Practice Problem 2
	Slide 15: Practice Problem 3
	Slide 16: Practice Problem 4
	Slide 17: Practice Problem 5
	Slide 18: Solutions
	Slide 19: Practice Problem 1 (cont'd)
	Slide 20: Practice Problem 2 - ANSWER
	Slide 21: Practice Problem 3 - ANSWER
	Slide 22: Practice Problem 4 Answer
	Slide 23: Practice Problem 5 (a) - ANSWER
	Slide 24: Practice Problem 5 (b) - ANSWER
	Slide 25: Practice Problem 5 (c) - ANSWER
	Slide 26: Practice Problem 5 (d) - ANSWER
	Slide 27: Practice Problem 5 (e) - ANSWER

