
CS62 Class 8: Stacks & Queues
Basic Data Structures

https://gohighbrow.com/stacks-and-queues/

https://gohighbrow.com/stacks-and-queues/

Agenda
• Stacks: conceptual; implementation

• Queues: conceptual; implementation

• Algorithmic & affordance analysis

• Using queues in the Java Collections Framework

Stacks

Stacks

• Dynamic linear data structures.

• Elements are inserted and removed following the LIFO paradigm.

• LIFO: Last In, First Out.

• Remove the most recent element.

• Similar to lists, there is a sequential nature to the data.

• Metaphor of a stack of plates at the dining hall.

• Want a plate? Pop the top plate.

• Add a plate? Push it to make it the new top.

• Want to see the top plate? Peek.

• We want to make push and pop as time efficient as possible.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Example of stack operations

push To be or not to be that is

pop to be not that or be

To

be

To
be
or

To
be
or
not

To
be
or
not
to

To
be
or
not

To
be
or
not

To
be
or
not

To
be
or

To
be
or
that

To
be
or

To
be

To To
is

To
be

push to top pop from top

Out
First
In
Last

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Implementing stacks with ArrayLists

• Where should the top go to make push and pop as efficient as possible?

• The end/rear represents the top of the stack.

• To push an element, call ArrayList add(E element).

• Adds at the end. Amortized .

• To pop an element, call ArrayList remove().

• Removes and returns the element from the end. Amortized .

• To peek, call ArrayList get(size()-1).

• Retrieves the last element. .

• Q: What if the front/beginning were to represent the top of the stack? What are the run times?

• Push, pop would be and peek .

‣ This is because adding/removing to the front requires shifting all the elements to
the right which takes O(n) time. But indexing into an Array is always O(1).

O+(1)

O+(1)

O(1)

O(n) O(1)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Implementing stacks with singly linked lists

• Where should the top go to make push and pop as efficient as possible?

• The head represents the top of the stack.

• To push an element add(E element).

• Adds at the head. .

• To pop an element remove().

• Removes and retrieves from the head. .

• To peek get(0).

• Retrieves the head. .

• Q: What if the last node was to represent the top of the stack? What are the run times?
• Push, pop, peek would all be .
‣ This is because we need to iterate through all the SLL’s .next pointers.

O(1)

O(1)

O(1)

O(n)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Implementing stacks with doubly linked lists

• Where should the top go to make push and pop as efficient as possible?

• The head represents the top of the stack.

• To push an element addFirst(E element).

• Adds at the head. .

• To pop an element removeFirst().

• Removes and retrieves from the head. .

• To peek get(0).

• Retrieves the head’s element. .

• If the tail were to represent the top of the stack, we’d need to use addLast(E
element), removeLast(), and get(size()-1) to have complexity.

• Guaranteed constant performance but memory overhead with pointers.

O(1)

O(1)

O(1)

O(1)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Stack Operation & Run Time Summary

ArrayLists: end SLList: head DLList: head or tail

push
add

O+(1)
addFirst

O(1)
addFirst/addLast

O(1)

pop
remove

O+(1)
removeFirst

O(1)

removeFirst/
removeLast

O(1)

peek
get(size-1)

O(1)
get(0)
O(1)

get(0)/get(size-1)
O(1)

Due to ArrayLists not needing additional memory overhead of pointer maintenance,
they are slightly preferred for stack implementation.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Implementation of stacks (see linked code)

• Stack.java: simple interface with push, pop, peek, isEmpty, and size
methods.

• ArrayListStack.java: for implementation of stacks with ArrayLists. Must
implement methods of Stack interface.

• LinkedStack.java: for implementation of stacks with singly linked lists. Must
implement methods of Stack interface.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Worksheet time!

Hint: draw out the stack!

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Worksheet answers

Yes

No because of the 0

Yes

No because of the 1

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Stack applications

• Call stack when running your code.

• Back button in browser.

• Undo in word processor.

• Basic mechanisms in compilers, interpreters (pushdown automata, see CS101).

• Postfix expression evaluation (see HW4 - calculator).

• If the next thing we read is a number, push it on the stack.

• If the next thing we read is an operator, remove the top two things from the
stack, apply the operator and push the answer back on the stack.

• 3 + 5 * 7 is 3 5 7 * +

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Queues

Queues

• Dynamic linear data structures.

• Elements are inserted and removed following the FIFO paradigm.

• FIFO: First In, First Out.

• Remove the least recent element.

• Similar to lists, there is a sequential nature to the data.

• Metaphor of a line of people waiting to buy tickets.

• Just arrived? Enqueue person to the end of line.

• First to arrive? Dequeue person at the top of line.

• We want to make enqueue and dequeue as time efficient as possible.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Example of queue operations
enqueue To be or not to be that is

dequeue To be or not to be

To

be

or
be
To

not
or
be
To

to be
to
not
or

be
to
not

that
be
that that is

that
be
To

dequeue from beginning

enqueue at end

Out
First
In

First

not
or
be
To

not
or
be

to be
to
not
or

be
to
not

be
to

that

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Worksheet time!

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Worksheet answers

No

Yes

No

No

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Implementing queue with ArrayLists

• Where should we enqueue and dequeue elements?

• To enqueue an element add() at the end of arrayList. Amortized .

• To dequeue an element remove(0). .

• What if we add at the beginning and remove from end?

• Now dequeue is cheap () but enqueue becomes expensive ().

O+(1)

O(n)

O+(1) O(n)

This isn’t great - we always will have a constant time operation. Can linked lists do better?

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Implementing queue with singly linked list

• Where should we enqueue and dequeue elements?

• To enqueue an element add() at the head of SLL ().

• To dequeue an element remove(size()-1) ().

• What if we add at the end and remove from beginning?

• Now dequeue is cheap () but enqueue becomes expensive ().

• for both if we have a tail pointer.

• enqueue at the tail, dequeue from the head.

• Simple modification in code, big gains!

• Version that recommended textbook follows.

O(1)

O(n)

O(1) O(n)

O(1)
Why dequeue from head and not
enqueue from head?
Because, as per last lecture,
removeEnd() needs more than a tail
pointer to set the second to last
element’s next = null

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Implementing queue with doubly linked list

• Where should we enqueue and dequeue elements?

• To enqueue an element addLast() at the tail of DLL ().

• To dequeue an element removeFirst() ().

• What if we enqueue at the head and dequeue from tail?

• Still .

• However, DLLists have a lot of extra pointers. In practice, "jumping" around the
memory can increase significantly the running time as well.

O(1)

O(1)

O(1)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Queue Operation & Run Time Summary

ArrayLists SLList: head SLList with tail
pointer

DLL

enqueue
add

O+(1)
addFirst

O(1)
addLast

O(1)
addLast

O(1)

dequeue remove(0)
O(n)

remove(size-1)
O(n)

removeFirst
O(1)

removeFirst
O(1)

A SLList with a tail pointer is the most efficient implementation of a queue, since
you don’t need to maintain unused prev pointers like a DLL.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Implementation of queues

• Queue.java: simple interface with enqueue, dequeue, peek, isEmpty, and size
methods.

• ArrayListQueue.java: for implementation of queues with ArrayLists. Must
implement methods of Queue interface.

• LinkedQueue.java: for implementation of queues with doubly linked lists. Must
implement methods of Queue interface.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Worksheet time!

• Think of a common real life application for a stack. How would it change if we
used a queue?

• Think of a common real life application for a queue. How would it change if we
used a stack?

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Worksheet time!

• Match the description to the Java code snippet.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Worksheet answers

• Match the description to the Java code snippet.

3

4

5

6

2

1

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

History of queues

• Queues have existed in math for a long time (queueing theory, 1909 by Danish
mathematician Agner Krarup Erlang - studying how to improve telephone call
centers, proved that you could apply a Poisson distribution to model the problem)

• World War II made research into queueing theory very popular to support
wartime efforts

• During the Cold War, British mathematician David Kendall
used queueing theory to manage supplies in the Berlin Airlift

https://cs.pomona.edu/classes/cs62/history/stack&queue/

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://cs.pomona.edu/classes/cs62/history/stack&queue/

Modern queue applications

• Music (e.g. Spotify) queue.

• Streaming data buffers (Netflix, Hulu, etc.).

• Asynchronous data transfer (file I/O, sockets).

• Requests in shared resources (printers).

• Traffic analysis.

• Waiting times at calling center.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Affordance analysis

https://cs.pomona.edu/classes/cs62/history/stack&queue/

https://arxiv.org/pdf/2101.00786

• “Affordance analysis is an alternative algorithm analysis that
draws on science and technology studies, philosophy of
technology, and human-computer interaction to examine how
computational abstractions such as data structures and
algorithms embody affordances.”

• An affordance is a property of an object that make specific
outcomes more likely, such as signifying its use; e.x., a
doorknob affords turning, a teapot handle affords holding so
you don’t burn yourself while pouring liquid

• Affordances are human-designed and imbue values

• Who is left behind, and who is prioritized in the design of a
data structure/algorithm?

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://cs.pomona.edu/classes/cs62/history/stack&queue/
https://arxiv.org/pdf/2101.00786

Affordance analysis of queues

• Discussion Q: Consider some modern applications of queues: hospital emergency
rooms, airport security lines, or customer support centers. Should these systems
always operate on a FIFO queue, or should some people be given priority? How do
we balance fairness with efficiency in such systems? How would you change any
modern queue application to make it, in your opinion, more “fair”? Who benefits,
and who is left out?

https://cs.pomona.edu/classes/cs62/history/stack&queue/

https://arxiv.org/pdf/2101.00786

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://cs.pomona.edu/classes/cs62/history/stack&queue/
https://arxiv.org/pdf/2101.00786

Using stacks/queues in JCF

“Deque” interface & ArrayDeque (or LinkedList)

Deque in Java Collections

https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html

• Do not use Stack. Deprecated class. (If you need a stack, it’s easy to build your
own stack, or just use the code provided with this lecture.)

• The Queue class is an interface, not a class you can import.

• It’s recommended to use the Deque interface over the Queue interface.

• Double-ended queue (can add and remove from either end).

 import java.util.Deque;
 public interface Deque<E> extends Queue<E>
• You can choose between LinkedList and ArrayDeque implementations.

• Deque queue = new ArrayDeque(); //preferable
• Deque queue = new LinkedList(); //also works

https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html

Lecture 8 wrap-up
• Darwin Part II due Tues 11:59pm

• Since I’m gone next week, winner of the competition will be announced in class
10/6

• HW4: Calculator released (build a calculator using stacks; individual assignment, no
starter code)

• This is the last lecture that will be on Checkpoint 1! Checkpoint 1 is next Monday.
Lab this week is a review session. Review materials (5 practice problems) are also
already up online (Lab 5 slides)

• If you have SDRC accommodations, let them know ASAP (schedule a proctoring time)

Resources
• Stacks & queues from the textbook: https://algs4.cs.princeton.edu/13stacks/

• Oracle Queue: https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html

• See slides following this for 2 more practice problems

Worksheet partially lifted from https://www.cs.princeton.edu/courses/archive/fall18/cos126/precepts/p15-stacks-queues/Stacks-and-Queues-Worksheet.pdf

https://algs4.cs.princeton.edu/13stacks/
https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html
https://www.cs.princeton.edu/courses/archive/fall18/cos126/precepts/p15-stacks-queues/Stacks-and-Queues-Worksheet.pdf

Bonus practice problem
• Write a method isBalanced that given a String of parentheses and curly brackets, it

determines whether they are properly balanced. For example, it should return true if given
"[()]{}{[()()]()}" and false for "[(])".

Bonus answer
private boolean isBalanced(String input) {
 Stack<Character> stack = new Stack<>();
 for (char parenthesis : input.toCharArray()) {
 if (parenthesis == '(' || parenthesis == '[' || parenthesis ==
'{') {
 stack.push(parenthesis);
 } else {
 if (stack.isEmpty()) {
 return false;
 }
 char top = stack.pop();

 if (parenthesis == ')' && top != '(' || parenthesis == ']'
&& top != '[' || parenthesis == '}' && top != '{') {
 return false;
 }
 }
 }
 return stack.isEmpty();
 }

Bonus practice problem 2
• What does the following code fragment do to the queue q?

 Stack<String> stack = new Stack<>();

 while (!q.isEmpty()) {

 stack.push(q.dequeue());

 }

 while (!stack.isEmpty()) {

 q.enqueue(stack.pop());

 }

Bonus answer 2
It inverts the queue, i.e., flips the order of the queue (the first element in the queue is now the last).

