
CS62 Class 3: Encapsulation & Inheritance
Java Fundamentals

Last time review
• Java is an object oriented language: constructors,

instances, methods

• A method can be declared static iff it does not
use any instance variables

• Static variables are shared across class instances

void = doesn’t return anything

String[] args = an array of Strings
(command-line arguments)

Lecture 3 agenda
• Encapsulation, access keywords & data hiding: public vs private

keywords

• Inheritance

• Polymorphism

Encapsulation

Data hiding (aka encapsulation)
• Data hiding is a core concept in Object-Oriented Programming.

• We encapsulate data and related methods in one class and we restrict
who can see and modify data.

• For example, FERPA protects the privacy of students so the
Registrar cannot share their academic record freely, even if it's
their parents who request it.

• Java uses access modifiers to set the access level for classes, variables,
methods and constructors.

Access Modifiers: public, private, default, protected
• You are already familiar with the public keyword. E.g., public class PomonaStudent.

• For classes, you can either use public or default:

• public: The class is accessible by any other class. E.g.,

• public class PomonaStudent

• default: The class is only accessible by classes in the same package (think of it as in the same
folder. More soon). This is used when you don't specify a modifier. E.g.,

• class PomonaStudent

• For variables, methods, and constructors, you can use any of the following:

• public: the code is accessible by any other class

• private: The code is only accessible within the declared class

• default: The code is only accessible in the same package. This is used when you don't specify a modifier

• protected: The code is accessible in the same package and subclasses (more later).

Package
• A grouping of related classes that provides access protection and name space

management. E.g.,

• java.lang and java.util for fundamental classes or java.io for classes related
to reading input and writing output.

• Packages correspond to folders/directories.

• Lower-case names. E.g.,

• package registrar;

• at top of file and file has to be within registrar folder

• You may also import built-in Java packages, eg import java.util.*; for including all
classes

• or import java.util.Arrays; for more specific access (Arrays class).

https://docs.oracle.com/javase/tutorial/java/package/packages.html

http://java.io
https://docs.oracle.com/javase/tutorial/java/package/packages.html

Data Hiding
• To follow the concept of data hiding, we prefer to define instance

variables as private.

• We provide more lax (i.e. default, protected, or public)
getter and setter methods to access and update the value of
a private variable.

Demo: PomonaStudent, ScrippsStudent, StudentLauncher
package registrar;

public class PomonaStudent {

 private String name;
 private String email;
 private int id;
 private int yearEntered;
 private String academicStanding;
 private boolean graduated;
 private static int studentCounter;

 int getYearEntered() { //default access
 return yearEntered;
 }

 void setYearEntered(int yearEntered) {
 this.yearEntered = yearEntered;
 }

 //private - scripps should not be able to graduate pomona students
 private static void graduateAllStudents(){
 studentCounter = 0;
 }

 public PomonaStudent(String name){
 this.name = name;
 studentCounter++;
 }

 public static PomonaStudent olderStudent(PomonaStudent p1, PomonaStudent p2) {
 if (p1.yearEntered < p2.yearEntered) {
 //if they entered an earlier year, they are an older (in class ranking) student
 return p1;
 }
 return p2;
 }

 public String toString(){
 return "Pomona Student \n Name: " + name + "\n email: " + email + "\n id: " + id;
 }

}

all the instance variables have
been declared private

we have moved the file to the registrar/
folder and declared package registrar

getters and setters are
default access (any code in
the package can use them)

Worksheet time! Sometimes, we want a .java file
to just be the class definition (no
main), and we’ll have a separate
“launcher” .java file with a main
method.

What’s wrong with
StudentLauncher?

Worksheet answers

registrar (lower case)

yearEntered is a private variable, need getYearEntered()
graduateAllStudents is a private method, cannot use here

type error - needs 2 PomonaStudents, but student2 is
ScrippsStudent

Inheritance

The last example
• Why is olderStudent a method that takes only parameters of type

PomonaStudent only? It would be nice to compare both PomonaStudents
and ScrippsStudents without having to write 3 different signatures

• olderStudent(PomonaStudent p1, PomonaStudent p2)

• olderStudent(ScrippsStudent p1, ScrippsStudent p2)

• olderStudent(PomonaStudent p1, ScrippsStudent p2)

• What if we made a general Student class, which could define
commonalities shared between PomonaStudents and ScrippsStudents?
Then we could write data specific to each school (e.g., ID1 course for
Pomona students) in the more specialized classes.

Inheritance conceptual overview
• Classes can be parent/child classes of each other (subclasses)

class Student
getName()

class PomonaStudent
getLanguageReqCompleted()

class FirstYearPomonaStudent
getID1course()

class FourthYearPomonaStudent
getThesisAdvisor()

class ScrippsStudent

getGWSReqCompleted()

Inheritance
• When you want to create a new class and there is already a class that

includes some of the code that you want, you can derive your new class
from the existing class. In doing this, you can reuse the variables and
methods of the existing class without having to write (and debug!) them.

• A class that is derived from another is called a subclass or child class.

• The class from which the subclass is derived is called a superclass or
parent class.

• Java allows multilevel inheritance: A class can extend a class which
extends a class etc.

Inheritance & encapsulation
• The subclass inherits all the public and protected variables and

methods.

• Not the private ones, although it can access them with appropriate
getters and setters.

• The inherited variables can be used directly, just like any other variables.

• You can write a new instance method in the subclass that has the same
signature as the one in the superclass, thus overriding it.

• We have already done that! (How?)

All classes inherit class Object
• Directly if they do not extend any other class, or indirectly as descendants.

• Object class has built-in methods that are inherited.

• public String toString()
• Returns string representation of object – default is hexadecimal hash of

memory location.

• We’ve overrode this!
• public boolean equals (Object other)

• Default behavior uses == returns true only if this and other are located in same
memory location.

• Works fine for primitives but not objects. We would need to override it (more
later).

• public int hashCode()
• Unique identifier defined so that if a.equals(b) then a, b have same hash

code (more later).

•

use the super keyword to access the parent

• Refers to the direct parent of the subclass.

• E.g., super in FirstYearPomonaStudent refers to PomonaStudent

• super.instanceMethod(): for overridden methods.

• What is an overridden method? If FirstYearPomonaStudent has a method
that’s the same name as a method in PomonaStudent, but we want to call
the PomonaStudent one instead, we need to use super.

• super(args): to call the constructor of the super class. Should be called in
the first line of the subclass’s constructor.

Code example
class Student {

 private String name;
 private String email;
 private int id;
 private String major;
 private int yearEntered;

 private static int studentCounter;

 protected Student(String name, String email, int id){
 this.name = name;
 this.email = email;
 this.id = id;
 studentCounter++;
 major = "Undeclared";
 }
...
 protected static int getStudentCounter(){
 return studentCounter;
 }

 protected static void setStudentCounter(int students){
 studentCounter = students;
 }

 protected int getMaxCredits(){
 return 4;
 }

 public String toString(){
 return "Student Info - Name: " + name + "\nemail: " + email + "\nid: " + id + "\n";
 }

 public static Student olderStudent(Student p1, Student p2) {
 if (p1.getYearEntered() < p2.getYearEntered()) {
 //if they entered an earlier year, they are an older (in class ranking) student
 return p1;
 }
 return p2;
 }

}

moved shared variables/methods to Student class

created a general olderStudent method

calls Student.toString()

Q: Why do we need super? Why can’t we
write Student.toString() directly?

A: the class name syntax is reserved for static methods!
Java will think you’re trying to call a static method,
instead of the instance method of the parent class.

public class PomonaStudent extends Student {

 private boolean languageReqCompleted;

 private static int pomonaStudentCounter;

 protected PomonaStudent(String name, String email, int id){
 super(name, email, id);
 pomonaStudentCounter++;
 }

 protected void completeLanguageReq() {
 languageReqCompleted = true;
 }

 protected boolean getLanguageReqCompleted() {
 return languageReqCompleted;
 }

 public String toString(){
 return "Pomona " + super.toString();
 }

 protected static void graduateAllStudents(){
 Student.setStudentCounter(Student.getStudentCounter()
 - pomonaStudentCounter);
 pomonaStudentCounter = 0;
 }
}

public class ScrippsStudent extends Student {

 private boolean gwsReqCompleted;

 private static int scrippsStudentCounter;

 protected ScrippsStudent(String name, String email, int id){
 super(name, email, id);
 scrippsStudentCounter++;
 }

 protected void completeGWSReq() {
 gwsReqCompleted = true;
 }

 protected boolean getGWSReqCompleted() {
 return gwsReqCompleted;
 }

 public String toString(){
 return "Scripps " + super.toString();
 }

 protected static void graduateAllStudents(){
 Student.setStudentCounter(Student.getStudentCounter()
 - scrippsStudentCounter);
 scrippsStudentCounter = 0;
 }

}

difference between subclasses is
language vs GWS requirement

each class has their own
graduateAllStudents and counter,
which also changes the overall
Student counter

class FirstYearPomonaStudent extends PomonaStudent {

 private String id1;
 private static int firstYearCounter;

 protected FirstYearPomonaStudent(String name, String email,
int id, String id1){
 super(name, email, id);
 this.id1 = id1;
 firstYearCounter++;
 }

 protected String getId1(){
 return id1;
 }

 protected void setID1(String id1){
 this.id1 = id1;
 }

 public String toString(){
 return super.toString() + "First-Year Student Attending
ID1: " + id1;
 }

}

class FourthYearPomonaStudent extends PomonaStudent {

 private String thesisTitle;
 private static int fourthYearCounter;

 protected FourthYearPomonaStudent(String name, String email,
int id, String thesisTitle){
 super(name, email, id);
 this.thesisTitle = thesisTitle;
 fourthYearCounter++;
 }

 protected String getThesisTitle(){
 return thesisTitle;
 }

 protected void setThesisTitle(String thesisTitle){
 this.thesisTitle = thesisTitle;
 }

 @Override
 protected int getMaxCredits(){
 return 6;
 }

 public String toString(){
 return super.toString() + "Fourth-Year Student Writing
Thesis on: " + thesisTitle;
 }
}

Between First and Fourth year
Pomona student, difference is
having new ID1 versus thesis
instance variables

Also, this @overrides the
getMaxCredits() in Student.java,
which was only 4

public class App {

 public static void main(String[] args) {

 FirstYearPomonaStudent student1 = new FirstYearPomonaStudent("daniel", "daniel@pomona.edu", 1, "War and Peace");
 FirstYearPomonaStudent student2 = new FirstYearPomonaStudent("wentao", "wentao@pomona.edu", 2, "Everday Chemistry");
 ScrippsStudent student3 = new ScrippsStudent("stacy", "stacy@scripps.edu", 3);
 ScrippsStudent student4 = new ScrippsStudent("abram", "abram@scripps.edu", 4);
 FourthYearPomonaStudent student5 = new FourthYearPomonaStudent("millie", "millie@pomona.edu", 5, "Power and its
 Effects on Software Engineering");
 FirstYearPomonaStudent[] firstYears = {student1, student2};

 for (FirstYearPomonaStudent firstYear : firstYears) {
 System.out.println(firstYear);
 System.out.println("---");
 }

 //can use more general parent class
 Student[] students = new Student[5];
 students[0] = student1;
 students[1] = student2;
 students[2] = student3;
 students[3] = student4;
 students[4] = student5;
 for (Student student : students) {
 System.out.println(student);
 System.out.println("---");
 }

 //checking graduating students
 System.out.println(Student.getStudentCounter()); //should be 5
 PomonaStudent.graduateAllStudents();
 System.out.println(Student.getStudentCounter()); //now should be 2
 ScrippsStudent.graduateAllStudents();
 System.out.println(Student.getStudentCounter()); //now should be 0

 }
}

An array with the most specific type (FirstYearPomonaStudent)

An array with the most general type (Student)

Polymorphism

Polymorphism
• Polymorphism means one object can take many forms: they can use

instance variables and methods (public/protected/default) from many
classes.
• FirstYearPomonaStudents are still PomonaStudents are still Students

are still Objects

student1

FirstYearPomonaStudent

PomonaStudent

Student

Polymorphism

Polymorphism

ParentClass obj = new ChildClass();

For flexibly changing objects between child classes, use this syntax:

Student student1 = new FirstYearPomonaStudent(“frank”);

FirstYearPomonaStudent student1 = new Student(“frank”); ❌

✅

Overriding, dynamic vs static polymorphism
• Overriding: Instance methods in child classes override the instance

methods in the parent classes (like .getMaxCredits()).

• This is called dynamic polymorphism, since it happens at runtime.

• In contrast to static polymorphism, which happens when we overload
methods (such as having multiple constructors).

static polymorphism example dynamic polymorphism example

Method hiding
• Method hiding occurs when a

subclass defines a static method
with the same signature as a static
method in its superclass.

• Unlike instance methods, which
can be overridden, static methods
are resolved at compile time
based on the class type (the type
on the left side), not the object
type.

• Same thing happens with all
variables: both static and instance.

Remember: static methods only,
but all variables The important thing is this type here

Example: Animal
public class Animal {
 public int legs = 2;
 public static String species = "Animal";
 public static void testStaticMethod() {
 System.out.println("The static method in Animal");
 }
 public void testInstanceMethod() {
 System.out.println("The instance method in Animal");
 }
}

Example: Cat
public class Cat extends Animal {
 public int legs = 4;
 public static String species = "Cat";
 public static void testStaticMethod() {
 System.out.println("The static method in Cat");
 }
 public void testInstanceMethod() {
 System.out.println("The instance method in Cat");
 }
}

Hiding vs overriding
public static void main(String[] args) {
 Cat myCat = new Cat();
 myCat.testStaticMethod(); //invoking a hidden method
 myCat.testInstanceMethod(); //invoking an overridden method
 System.out.println(myCat.legs); //accessing a hidden field
 System.out.println(myCat.species); //accessing a hidden field
}

• Output:
The static method in Cat
The instance method in Cat
4
Cat

What we expected (hopefully).

Hiding vs overriding
public static void main(String[] args) {
 Animal yourCat = new Cat();
 yourCat.testStaticMethod(); //invoking a hidden method
 yourCat.testInstanceMethod(); //invoking an overridden method
 System.out.println(yourCat.legs); //accessing a hidden field
 System.out.println(yourCat.species); //accessing a hidden field
}

• Output:
The static method in Animal
The instance method in Cat
2
Animal

Used the Animal method because of the Animal type
Used the Cat method because it was overriden

Used the Animal instance variable because of the Animal type
Used the Animal static variable because of the Animal type

Summary

• If something’s type matches its class (e.g. Parent = new Parent(), Child =
new Child()), then just use the variables/methods (both static and
instance) in that class

• However, tricky things happen when you have Parent = new Child()

• Use Parent’s static methods and all variables (instance + static)

• Use Child’s instance methods and no variables

public class ClassA {
 public void methodOne(int i) {
 }
 public void methodTwo(int i) {
 }
 public static void methodThree(int i) {
 }
 public static void methodFour(int i) {
 }
}

public class ClassB extends ClassA {
 public static void methodOne(int i) {
 }
 public void methodTwo(int i) {
 }
 public void methodThree(int i) {
 }
 public static void methodFour(int i) {
 }
}

Worksheet time!
• 1. Which method overrides a

method in the superclass?

• 2. Which method hides a method
in the superclass?

• 3. What do the other methods do?

public class ClassA {
 public void methodOne(int i) {
 }
 public void methodTwo(int i) {
 }
 public static void methodThree(int i) {
 }
 public static void methodFour(int i) {
 }
}

public class ClassB extends ClassA {
 public static void methodOne(int i) {
 }
 public void methodTwo(int i) {
 }
 public void methodThree(int i) {
 }
 public static void methodFour(int i) {
 }
}

Worksheet answers • 1. Which method overrides a
method in the superclass?

• methodTwo

• 2. Which method hides a method in
the superclass?

• methodFour

• 3. What do the other methods do?

• Compile-time errors

• methodOne: “This static method
cannot hide the instance method
from ClassA”.

• methodThree: “This instance
method cannot override the static
method from ClassA”.

File I/O / Java Misc

There’s a few more things to know about Java

• Now we’ve covered most of Java’s quirks, but there are some good-to-know
syntax (like, how do you read user input from the console?)

• Fall semester is 1 week shorter than spring semester, so I’ve moved this lecture
into pre-reading for the lab. Please read it before lab (or when you need to use
it in your assignments). (It’s not particularly exciting to teach…)

• There will be a quiz question on these concepts (nothing that requires you to
memorize code, like I/O streams)

• Note for quizzes: closed note, but can retake

I/O streams
‣ Input stream: a stream from which a program reads its input data

‣ Output stream: a stream to which a program writes its output data

‣ Error stream: output stream used to output error messages or diagnostics

‣ Stream sources and destinations include disk files, keyboard, peripherals, memory
arrays, other programs, etc.

‣ Data stored in variables, objects and data structures are temporary and lost when the
program terminates. Streams allow us to save them in files, e.g., on disk or flash drive or
even a CD (!)

‣ Streams can support different kinds of data: bytes, characters, objects, etc.

https://docs.oracle.com/javase/tutorial/essential/io/streams.html

In Python, it was open()…
read()… write()…

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html
https://docs.oracle.com/javase/tutorial/essential/io/streams.html

Files
• Every file is placed in a directory in the file system.

• Absolute file name: the file name with its complete path and drive letter. E.g.,

• On Windows: C:\jli\somefile.txt

• On Mac/Unix: /~/jli/somefile.txt

• Caution: directory separator in Windows is \, which is A special character in Java.
Should be “\\” instead.

• File class: contains methods for obtaining file properties, renaming, and deleting files.
Not for reading/writing!

Writing data to a text file
• PrintWriter output = new PrintWriter(new File("filename"));

• If the file already exists, it will overwrite it. Otherwise, new file will be created.

• Invoking the constructor may throw an IOException so we will need to follow the
catch or specify rule.

• output.print and output.println work with Strings, and
primitives.

• Always close a stream!

https://docs.oracle.com/javase/7/docs/api/java/io/PrintWriter.html

Writing data to a text file
import java.io.File;
import java.io.IOException;
import java.io.PrintWriter;

public class WriteData {
 public static void main(String[] args) {

 PrintWriter output = null;
 try {
 output = new PrintWriter(new File("addresses.txt"));
 // Write formatted output to the file
 output.print("Alexandra Papoutsaki ");
 output.println(222);
 output.print("Jingyi Li ");
 output.println(111);

 } catch (IOException e) {
 System.err.println(e.getMessage());
 } finally {
 if (output != null)
 output.close();
 }
 }
}

https://liveexample.pearsoncmg.com/html/WriteData.html

need to import relevant classes

call .print or .println to write to file

catch IOException for any errors

.close() the I/O stream

Reading data
• java.util.Scanner reads Strings and primitives and breaks input into tokens, denoted

by whitespaces.

• To read from keyboard: Scanner inputStream = new Scanner(System.in);

• String input = inputStream.nextLine();

• input is a String. If you want to convert it into a number, you will need to use the
wrapper class of the primitive you want, e.g., Integer.parseInt(input);

• To read from file: Scanner inputStream = new Scanner(new File("filename"));

• Need to close stream as before.

• inputStream.hasNext() tells us if there are more tokens in the stream.
inputStream.next() returns one token at a time.

• Variations of next are nextLine(), nextByte(), nextShort(), etc.

You’ll see this in HW2

Reading data from a text file
import java.io.File;
import java.io.IOException;
import java.util.Scanner;

public class ReadData {
	 public static void main(String[] args) {

	 	 Scanner input = null;
	 	 // Create a Scanner for the file
	 	 try {
	 	 	 input = new Scanner(new File("addresses.txt"));

	 	 	 // Read data from a file
	 	 	 while (input.hasNext()) {
	 	 	 	 String firstName = input.next();
	 	 	 	 String lastName = input.next();
	 	 	 	 int room = input.nextInt();
	 	 	 	 System.out.println(firstName + " " + lastName + " " + room);
	 	 	 }
	 	 } catch (IOException e) {
	 	 	 System.err.println(e.getMessage());
	 	 } finally {
	 	 	 if (input != null)
	 	 	 	 input.close();
	 	 }
	 }
} https://liveexample.pearsoncmg.com/html/ReadData.html

same try…catch…finally structure

use Scanner class

close the file

use a while loop to check if file still has lines

.next() is space separated (if you want the
whole line, call .nextLine())

Full example/reference:

https://github.com/pomonacs622025sp/code/
blob/main/Lecture3/FileIOExample.java

https://github.com/pomonacs622025sp/code/blob/main/Lecture3/FileIOExample.java
https://github.com/pomonacs622025sp/code/blob/main/Lecture3/FileIOExample.java

Reading data with a buffered reader
• import java.io.FileReader;

• import java.io.BufferedReader;

FileReader fr = new FileReader(“fileToRead.txt”);

BufferedReader br = new BufferedReader(fr);

String line = br.readLine();

while ((line!= null) {

 //do something

 line = br.readLine();

}

a BufferedReader object takes a FileReader
object as input.

the .readLine() method will return null
when the file has no more lines to read, so
we can write a while loop

You’ll see this in HW3

Lecture 3 wrap-up
• Data and methods can be declare public, private, default, or protected

• A class can inherit from another class

• TODO: HW2 released, due next Tuesday

• Lab requires some pre-reading of miscellaneous Java syntax. It will be a
quiz question!

• Your first quiz will be in lab tonight. 5-10 minutes; don’t stress, we have
regrades. Covers everything we’ve seen so far (including today)

Resources
• Inheritance: https://docs.oracle.com/en/database/oracle/oracle-database/19/jjdev/Java-

overview.html#GUID-5C62367E-3197-4E67-A38E-39CE04C7B795

• Polymorphism: https://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html

• See after this slide for more practice problems

https://docs.oracle.com/en/database/oracle/oracle-database/19/jjdev/Java-overview.html#GUID-5C62367E-3197-4E67-A38E-39CE04C7B795
https://docs.oracle.com/en/database/oracle/oracle-database/19/jjdev/Java-overview.html#GUID-5C62367E-3197-4E67-A38E-39CE04C7B795
https://docs.oracle.com/en/database/oracle/oracle-database/19/jjdev/Java-overview.html#GUID-5C62367E-3197-4E67-A38E-39CE04C7B795
https://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html

Optional problem #1

• Solution: https://github.com/pomonacs622025sp/code/tree/main/Lecture4/animalShelter

Recall your Cat class. You also made a Dog class for the animal shelter, but realized there are lots
of commonalities – name, sex, age, daysInRescue. Let’s make a parent class Animal that both Dog
and Cat can extend. From your research, people who adopt cats care about their furType (short,
long, etc.) and people who adopt dogs care about their breed (Corgi, Golden Retriever, etc.). Write
3 classes to represent this information. Be sure to:

• Put all the classes in an appropriate package

• Choose the right access modifiers for your fields and methods

• Have getter and setter methods for your instance variables

• Have a constructor (that takes all the relevant parameters) and a counter variable for each class

• Have a toString() method for each class, with Dog and Cat calling the Animal’s toString() before
adding their own information.

(There’s no starter code for this problem: practice remembering the syntax by yourself!)

https://github.com/pomonacs622025sp/code/tree/main/Lecture4/animalShelter

Optional problem #2
Change graduateAllStudents() in the PomonaStudent class to only graduate
FourthYearPomonaStudents instead of all students.

Write a method protected FourthYearPomonaStudent
firstToFourthYear(FirstYearPomonaStudent p1, String
thesisTitle) that transitions p1 from a first year to a fourth year. Skipped 2
grades!

(Answer: exercise to the reader! Write test code to see!)

