
CS62 Class 24: Minimum Spanning Trees
Graphs

Agenda
• Minimum spanning trees

• The cut property

• Prim’s Algorithm

• Kruskal’s Algorithm

Minimum Spanning Trees
(MSTs)

Spanning Trees
• Given an edge weighted graph (not digraph!), a spanning tree

of is a subgraph that is:

• A tree: connected and acyclic.

• Spanning: includes all of the vertices of .

G
G T

G

https://www.tutorialspoint.com/data_structures_algorithms/spanning_tree.htm

https://www.tutorialspoint.com/data_structures_algorithms/spanning_tree.htm

Minimum Spanning Trees

A minimum spanning tree is a spanning tree
of minimum total weight.

• Example: Network of power lines that
connect a bunch of buildings.

Properties
• A connected graph can have more than one spanning tree, but only one

minimum spanning tree (assuming unique weights).

• All possible spanning trees of have the same number of vertices and edges.

• A spanning tree has edges.

• A spanning tree by definition cannot have any cycle.

• Adding one edge to the spanning tree would create a cycle (i.e. spanning trees
are maximally acyclic).

• Removing one edge from the spanning tree would make the graph disconnected
(i.e. spanning trees are minimally connected).

G

G

|V | − 1

Spanning Trees

Which are Spanning Trees?
A B

C Answer: just C

MST Applications
Left: Old school handwriting recognition (link)

Right: Medical imaging (e.g. arrangement of nuclei in cancer cells)

For more, see: http://www.ics.uci.edu/~eppstein/gina/mst.html

http://dspace.mit.edu/bitstream/handle/1721.1/16727/43551593-MIT.pdf;sequence=2
http://www.ics.uci.edu/~eppstein/gina/mst.html

Today: 2 algorithms to find the MST
Given a connected edge-weighted undirected graph, find a
spanning tree of minimum weight.

The cut property

• A cut is an assignment of a graph’s nodes to two non-empty sets.
• A crossing edge is an edge which connects a node from one set to a node from the other set.

Cut property: Given any cut, minimum weight crossing edge is in the MST.

• For rest of today, we’ll assume edge weights are unique.

A Useful Tool for Finding the MST: Cut Property

Cut: grey nodes vs white nodes

Cut Property in Action
Which edge is the minimum weight edge crossing the cut {2, 3, 5, 6}?

0-7 0.16
2-3 0.17
1-7 0.19
0-2 0.26
5-7 0.28
1-3 0.29
1-5 0.32
2-7 0.34
4-5 0.35
1-2 0.36
4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58
6-4 0.93

Cut Property in Action
Which edge is the minimum weight edge crossing the cut {2, 3, 5, 6}?

• 0-2. Must be part of the MST! 0-7 0.16
2-3 0.17
1-7 0.19
0-2 0.26
5-7 0.28
1-3 0.29
1-5 0.32
2-7 0.34
4-5 0.35
1-2 0.36
4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58
6-4 0.93

Cut Property Proof
Suppose that the minimum crossing edge e were not in the MST.

• Adding e to the MST creates a cycle.
• Some other edge f must also be a crossing edge.
• Removing f and adding e is a lower weight spanning tree.
• Contradiction!

Generic MST Finding Algorithm
Start with no edges in the MST.

• Find a temporary cut that has no crossing edges in the being built MST.
• Add smallest crossing edge to the MST.
• Repeat until V-1 edges.

This should work, but we need some way of finding a cut with no crossing edges!

• Random isn’t a very good idea.

• Prim’s and Kruskal’s algorithms are two ways to do it.

Prim’s algorithm

Prim’s algorithm overview
• Start with a random vertex and greedily grow tree .

• Add to the min weight edge with exactly one endpoint in .

• Repeat until edges.

T

T T

|V | − 1

Prim’s Demo (Conceptual)
Start from some arbitrary start node.

• Add shortest edge (mark black) that has one node inside the MST under construction.
Repeat until V-1 edges.

B

C

D

E

F

G

As

Node edgeTo
A -
B -
C -
D -
E -
F -
G -

5
2

1

15

3

2
11

3

1

1

41

B

C

D

E

F

G

As

Node edgeTo
A -
B -
C -
D -
E -
F -
G -

5
2

1

15

3

2
11

3

1

1

41

Prim’s Demo (Conceptual)
Start from some arbitrary start node.

• Add shortest edge (mark black) that has one node inside the MST under construction.
Repeat until V-1 edges.

B

C

D

E

F

G

As

Node edgeTo
A -
B -
C A
D -
E -
F -
G -

5
2

1

15

3

2
11

3

1

1

41

Prim’s Demo (Conceptual)
Start from some arbitrary start node.

• Add shortest edge (mark black) that has one node inside the MST under construction.
Repeat until V-1 edges.

B

C

D

E

F

G

As

Node edgeTo
A -
B -
C A
D -
E -
F -
G -

5
2

1

15

3

2
11

3

1

1

41

Prim’s Demo (Conceptual)
Start from some arbitrary start node.

• Add shortest edge (mark black) that has one node inside the MST under construction.
Repeat until V-1 edges.

B

C

D

E

F

G

As

Node edgeTo
A -
B -
C A
D -
E C
F -
G -

5
2

1

15

3

2
11

3

1

1

41

Prim’s Demo (Conceptual)
Start from some arbitrary start node.

• Add shortest edge (mark black) that has one node inside the MST under construction.
Repeat until V-1 edges.

B

C

D

E

F

G

As

Node edgeTo
A -
B -
C A
D -
E C
F -
G -

4

Which edge is added next?

Prim’s Demo (Conceptual)
Start from some arbitrary start node.

• Add shortest edge (mark black) that has one node inside the MST under construction.
Repeat until V-1 edges.

5
2

1

15

3

2
11

3

1

1

41

B

C

D

E

F

G

As

Node edgeTo
A -
B -
C A
D E
E C
F -
G -

5
2

1

15

3

2
11

3

1

1

41

Which edge is added next?

• Either A-B or D-E are guaranteed to work (see exercises for proof)!

• Note: They are not both guaranteed to be in the MST.

Prim’s Demo (Conceptual)
Start from some arbitrary start node.

• Add shortest edge (mark black) that has one node inside the MST under construction.
Repeat until V-1 edges.

B

C

D

E

F

G

As

Node edgeTo
A -
B -
C A
D E
E C
F -
G -

5
2

1

15

3

2
11

3

1

1

41

Prim’s Demo (Conceptual)
Start from some arbitrary start node.

• Add shortest edge (mark black) that has one node inside the MST under construction.
Repeat until V-1 edges.

B

C

D

E

F

G

As

Node edgeTo
A -
B -
C A
D E
E C
F -
G D

5
2

1

15

3

2
11

3

1

1

41

Prim’s Demo (Conceptual)
Start from some arbitrary start node.

• Add shortest edge (mark black) that has one node inside the MST under construction.
Repeat until V-1 edges.

B

C

D

E

F

G

As

Node edgeTo
A -
B -
C A
D E
E C
F -
G D

5
2

1

15

3

2
11

3

1

1

41

Prim’s Demo (Conceptual)
Start from some arbitrary start node.

• Add shortest edge (mark black) that has one node inside the MST under construction.
Repeat until V-1 edges.

B

C

D

E

F

G

As

Node edgeTo
A -
B -
C A
D E
E C
F G
G D

5
2

1

15

3

2
11

3

1

1

41

Prim’s Demo (Conceptual)
Start from some arbitrary start node.

• Add shortest edge (mark black) that has one node inside the MST under construction.
Repeat until V-1 edges.

B

C

D

E

F

G

As

Node edgeTo
A -
B -
C A
D E
E C
F G
G D

5
2

1

15

3

2
11

3

1

1

41

Prim’s Demo (Conceptual)
Start from some arbitrary start node.

• Add shortest edge (mark black) that has one node inside the MST under construction.
Repeat until V-1 edges.

B

C

D

E

F

G

As

Node edgeTo
A -
B A
C A
D E
E C
F G
G D

5
2

1

15

3

2
11

3

1

1

41

Prim’s Demo (Conceptual)
Start from some arbitrary start node.

• Add shortest edge (mark black) that has one node inside the MST under construction.
Repeat until V-1 edges.

Done!

Prim’s Algorithm
Start from some arbitrary start node.

• Repeatedly add shortest edge (mark black) that has one
node inside the MST under construction.

• Repeat until V-1 edges.

Why does Prim’s work? Special case of our generic algorithm.

• Suppose we add edge e = v->w.
• Side 1 of cut is all vertices connected to start, side 2 is all

the others.
• No crossing edge is black (all connected edges on side 1).
• No crossing edge has lower weight (consider in increasing

order).

Worksheet time!
• Starting at node 0, run Prim’s to find the MST.

Worksheet answer

Prim’s algorithm
(optimized)

Prim’s Algorithm Implementation
The natural implementation of the conceptual version of Prim’s algorithm is highly
inefficient.

• Example: Iterating over all pink edges shown is unnecessary and slow.

Can use some cleverness and a PQ to speed things up.

Realistic Implementation Demo

• Very similar to Dijkstra’s!

B

C

D

E

F

G

As
5

2

1

15

3

2
11

3

1

1

41

Prim’s Demo
Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A 0 -
B ∞ -
C ∞ -
D ∞ -
E ∞ -
F ∞ -
G ∞ -

5
2

1

15

3

2
11

3

1

1

Fringe: [(A: 0), (B: ∞), (C: ∞), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]

4

0

∞
∞

∞

∞

∞

∞

1

B

C

D

E

F

G

As

Node distTo edgeTo
A 0 -
B ∞ -
C ∞ -
D ∞ -
E ∞ -
F ∞ -
G ∞ -

5
2

1

15

3

2
11

3

1

1

4

0

∞
∞

∞

∞

∞

∞

1

Fringe: [(B: ∞), (C: ∞), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]

Prim’s Demo
Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A -
B 2 A
C 1 A
D ∞ -
E ∞ -
F ∞ -
G ∞ -

5
2

1

15

3

2
11

3

1

1

Fringe: [(C: 1), (B: 2), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]

4

∞
∞

∞

∞

∞

∞

1

2

1

Prim’s Demo
Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A 0 -
B 2 A
C 1 A
D ∞ -
E ∞ -
F ∞ -
G ∞ -

5
2

1

15

3

2
11

3

1

1

Fringe: [(C: 1), (B: 2), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]

4

∞

∞

∞

∞

1

2

1

Prim’s Demo
Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A -
B 2 A
C A
D ∞ -
E ∞ -
F ∞ -
G ∞ -

5
2

1

15

3

2
11

3

1

1

Fringe: [(B: 2), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]

4

∞

∞

∞

∞

1

2

Note: Vertex removal in this implementation of Prim’s is
equivalent to edge addition in the conceptual version of
Prim’s.

Prim’s Demo
Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.
Removed distTo

= part of MST

B

C

D

E

F

G

As

Node distTo edgeTo
A -
B 2 A
C A
D ∞ -
E 1 C
F 15 C
G ∞ -

5
2

1

15

3

2
11

3

1

1

Fringe: [(E: 1), (B: 2), (F: 15), (D: ∞), (G: ∞)]

4

∞

∞

∞

∞

1

2

1

15

Prim’s Demo
Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A -
B 2 A
C A
D ∞ -
E 1 C
F 15 C
G ∞ -

5
2

1

15

3

2
11

3

1

1

Fringe: [(E: 1), (B: 2), (F: 15), (D: ∞), (G: ∞)]

4

∞

∞

1

2

1

15

Prim’s Demo
Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Note: unlike Dijkstra’s, we consider distance from tree
(e.g., E is 1 away from the tree via C, but would be 2
away from the source A in Dijkstra’s)

Worksheet time!

B

C

D

E

F

G

As

Node distTo edgeTo
A -
B 2 A
C A
D ∞ -
E 1 C
F 15 C
G ∞ -

Fringe: [(E: 1), (B: 2), (F: 15), (D: ∞), (G: ∞)]

∞

∞

2

1

15

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.
• We just relaxed C’s edges. Show distTo, edgeTo, and fringe after the next relaxation.

5
2

1

15

3

2
11

3

1

1

41

B

C

D

E

F

G

As

Node distTo edgeTo
A -
B 2 A
C A
D 2 E
E C
F 4 E
G 3 E

5
2

1

15

3

2
11

3

1

1

Fringe: [(B: 2), (D: 2), (G: 3), (F: 4)]

4

∞

∞

1

2

15

2

3

4

Worksheet answers
Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.
• We remove the C->E edge and update D, G, and F. (B not updated)

B

C

D

E

F

G

As

Node distTo edgeTo
A -
B 2 A
C A
D 2 E
E C
F 4 E
G 3 E

5
2

1

15

3

2
11

3

1

1

Fringe: [(B: 2), (D: 2), (G: 3), (F: 4)]

41

2 2

3

4

Prim’s Demo
Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A -
B A
C A
D 2 E
E C
F 4 E
G 3 E

5
2

1

15

3

2
11

3

1

1

Fringe: [(D: 2), (G: 3), (F: 4)]

41

2

3

4

No need to consider B’s other
edges with weight 5 and 3 since
other side is already marked

Prim’s Demo
Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A -
B A
C A
D 2 E
E C
F 4 E
G 3 E

5
2

1

15

3

2
11

3

1

1

Fringe: [(D: 2), (G: 3), (F: 4)]

41

2

3

4

Prim’s Demo
Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A -
B A
C A
D E
E C
F 4 E
G 3 E

5
2

1

15

3

2
11

3

1

1

Fringe: [(G: 3), (F: 4)]

41

3

4

Prim’s Demo
Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A -
B A
C A
D E
E C
F 4 E
G 1 D

5
2

1

15

3

2
11

3

1

1

Fringe: [(G: 1), (F: 4)]

41

3

4

1

Prim’s Demo
Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A -
B A
C A
D E
E C
F 4 E
G 1 D

5
2

1

15

3

2
11

3

1

1

Fringe: [(G: 1), (F: 4)]

41
4

1

Prim’s Demo
Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A -
B A
C A
D E
E C
F 1 G
G D

5
2

1

15

3

2
11

3

1

1

Fringe: [(F: 1)]

41
4

1

Prim’s Demo
Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A -
B A
C A
D E
E C
F 1 G
G D

5
2

1

15

3

2
11

3

1

1

Fringe: [(F: 1)]

41

1

Prim’s Demo
Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A -
B A
C A
D E
E C
F G
G D

5
2

1

15

3

2
11

3

1

1

Fringe: []

41

Prim’s Demo
Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Done! MST is represented by edgeTo array.

Prim’s algorithm code &
runtime

Prim’s vs. Dijkstra’s
Prim’s and Dijkstra’s algorithms are exactly the same, except Dijkstra’s considers
“distance from the source”, and Prim’s considers “distance from the tree.”

Visit order:

• Dijkstra’s algorithm visits vertices in order of distance from the source.
• Prim’s algorithm visits vertices in order of distance from the MST under construction.

Relaxation:

• Relaxation in Dijkstra’s considers an edge better based on distance to source.

• Relaxation in Prim’s considers an edge better based on distance to tree.

public class PrimMST {
 public PrimMST(EdgeWeightedGraph G) {
 edgeTo = new Edge[G.V()];
 distTo = new double[G.V()];
 marked = new boolean[G.V()];
 fringe = new SpecialPQ<Double>(G.V());

 distTo[s] = 0.0;
 setDistancesToInfinityExceptS(s);
 insertAllVertices(fringe);

 /* Get vertices in order of distance from tree. */
 while (!fringe.isEmpty()) {
 int v = fringe.delMin();
 scan(G, v);
 }
 }
 ...

Prim’s Implementation (Pseudocode, 1/2)

Fringe is ordered by
distTo tree. Must be a
specialPQ like Dijkstra’s.

Get vertex closest to tree
that is unvisited.
Scan means to consider
all of a vertices outgoing
edges.

private void scan(EdgeWeightedGraph G, int
v) {
 marked[v] = true;
 for (Edge e : G.adj(v)) {
 int w = e.other(v);
 if (marked[w]) { continue; }
 if (e.weight() < distTo[w]) {
 distTo[w] = e.weight();
 edgeTo[w] = e;
 pq.decreasePriority(w, distTo[w]);
 }
 }
}

Prim’s Implementation (Pseudocode, 2/2)

Important invariant, fringe must be ordered by
current best known distance from tree.

Already in MST, so go to next edge.
Better path to a particular vertex
found, so update current best known
for that vertex.

Vertex is closest, so add to MST.

 while (!fringe.isEmpty()) {
 int v = fringe.delMin();
 scan(G, v);
 }

Prim’s Runtime

Q: What is the runtime of Prim’s
algorithm?

• Assume all PQ operations take
O(log(V)) time.

• Give your answer in Big O notation.

private void scan(EdgeWeightedGraph G, int
v) {
 marked[v] = true;
 for (Edge e : G.adj(v)) {
 int w = e.other(v);
 if (marked[w]) { continue; }
 if (e.weight() < distTo[w]) {
 distTo[w] = e.weight();
 edgeTo[w] = e;
 pq.decreasePriority(w, distTo[w]);
 }
 }
}

 while (!fringe.isEmpty()) {
 int v = fringe.delMin();
 scan(G, v);
 }

Prim’s Algorithm Runtime
Priority Queue operation count, assuming binary heap based PQ:

• Insertion: V operations, each costing O(log V) time.
• Delete-min: V operations, each costing O(log V) time.
• Decrease priority: E operations, each costing O(log V) time.

Overall runtime: O(V*log(V) + V*log(V) + E*log(V)).

• Assuming E > V, this is just O(E log V) (Same as Dijkstra's).

Operations Cost per operation Total cost

PQ add V O(log V) O(V log V)

PQ delMin V O(log V) O(V log V)

PQ decreasePriority O(E) O(log V) O(E log V)

Kruskal’s algorithm

Kruskal’s algorithm overview
• Sort edges in ascending order of weight.

• Starting from the one with the smallest weight, add it to the MST unless doing so would create a
cycle.

• Uses union-find, a data structure we haven't covered.

Kruskal’s Demo
Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

B

C

D

E

F

G

As

MST: []

5
2

1

15

3

3
11

3

1

1

A-C 1
C-E 1
D-G 1
F-G 1
A-B 2
E-B 3
D-E 3
G-E 3
E-F 4
B-C 5
B-D 11
C-F 15

41

B

C

D

E

F

G

As

MST: []

5
2

1

15

3

3
11

3

1

1

A-C 1
C-E 1
D-G 1
F-G 1
A-B 2
E-B 3
D-E 3
G-E 3
E-F 4
B-C 5
B-D 11
C-F 15

41

Cycle?

White and green colorings for
vertices show cut being implicitly
utilized by Kruskal’s algorithm.

Kruskal’s Demo
Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

B

C

D

E

F

G

As

MST: [A-C]

5
2

1

15

3

3
11

3

1

1

A-C 1
C-E 1
D-G 1
F-G 1
A-B 2
E-B 3
D-E 3
G-E 3
E-F 4
B-C 5
B-D 11
C-F 15

41

Cycle? No.

Kruskal’s Demo
Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

B

C

D

E

F

G

As

MST: [A-C]

5
2

1

15

3

3
11

3

1

1

A-C 1
C-E 1
D-G 1
F-G 1
A-B 2
E-B 3
D-E 3
G-E 3
E-F 4
B-C 5
B-D 11
C-F 15

41

Cycle?

White and green colorings for
vertices show cut being implicitly
utilized by Kruskal’s algorithm.

Kruskal’s Demo
Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

B

C

D

E

F

G

As

MST: [A-C, C-E]

5
2

1

15

3

3
11

3

1

1

A-C 1
C-E 1
D-G 1
F-G 1
A-B 2
E-B 3
D-E 3
G-E 3
E-F 4
B-C 5
B-D 11
C-F 15

41

Cycle? No.

Kruskal’s Demo
Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

B

C

D

E

F

G

As

MST: [A-C, C-E]

5
2

1

15

3

3
11

3

1

1

A-C 1
C-E 1
D-G 1
F-G 1
A-B 2
E-B 3
D-E 3
G-E 3
E-F 4
B-C 5
B-D 11
C-F 15

41

Cycle?

White and green colorings for
vertices show cut being implicitly
utilized by Kruskal’s algorithm.

Kruskal’s Demo
Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges. Note that unlike Prim’s, the in-

progress MST is not guaranteed
to be connected

B

C

D

E

F

G

As

MST: [A-C, C-E, D-G]

5
2

1

15

3

3
11

3

1

1

A-C 1
C-E 1
D-G 1
F-G 1
A-B 2
E-B 3
D-E 3
G-E 3
E-F 4
B-C 5
B-D 11
C-F 15

41

Cycle? No.

Kruskal’s Demo
Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

B

C

D

E

F

G

As

MST: [A-C, C-E, D-G]

5
2

1

15

3

3
11

3

1

1

A-C 1
C-E 1
D-G 1
F-G 1
A-B 2
E-B 3
D-E 3
G-E 3
E-F 4
B-C 5
B-D 11
C-F 15

41

Cycle?

White and green colorings for
vertices show cut being implicitly
utilized by Kruskal’s algorithm.

Kruskal’s Demo
Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

B

C

D

E

F

G

As

MST: [A-C, C-E, D-G, F-G]

5
2

1

15

3

3
11

3

1

1

A-C 1
C-E 1
D-G 1
F-G 1
A-B 2
E-B 3
D-E 3
G-E 3
E-F 4
B-C 5
B-D 11
C-F 15

41

Cycle? No.

Kruskal’s Demo
Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

B

C

D

E

F

G

As

MST: [A-C, C-E, D-G, F-G]

5
2

1

15

3

3
11

3

1

1

A-C 1
C-E 1
D-G 1
F-G 1
A-B 2
E-B 3
D-E 3
G-E 3
E-F 4
B-C 5
B-D 11
C-F 15

41

Cycle?

White and green colorings for
vertices show cut being implicitly
utilized by Kruskal’s algorithm.

Kruskal’s Demo
Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

B

C

D

E

F

G

As

MST: [A-C, C-E, D-G, F-G, A-B]

5
2

1

15

3

3
11

3

1

1

A-C 1
C-E 1
D-G 1
F-G 1
A-B 2
E-B 3
D-E 3
G-E 3
E-F 4
B-C 5
B-D 11
C-F 15

41

Cycle? No.

Kruskal’s Demo
Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

B

C

D

E

F

G

As

MST: [A-C, C-E, D-G, F-G, A-B]

5
2

1

15

3

3
11

3

1

1

A-C 1
C-E 1
D-G 1
F-G 1
A-B 2
E-B 3
D-E 3
G-E 3
E-F 4
B-C 5
B-D 11
C-F 15

41

Cycle?

White and green colorings for
vertices show cut being implicitly
utilized by Kruskal’s algorithm.

Kruskal’s Demo
Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

B

C

D

E

F

G

As

MST: [A-C, C-E, D-G, F-G, A-B]

5
2

1

15

3

3
11

3

1

1

A-C 1
C-E 1
D-G 1
F-G 1
A-B 2
E-B 3
D-E 3
G-E 3
E-F 4
B-C 5
B-D 11
C-F 15

41

Cycle? Yes. Reject!

Kruskal’s Demo
Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

B

C

D

E

F

G

As

MST: [A-C, C-E, D-G, F-G, A-B]

5
2

1

15

3

3
11

3

1

1

A-C 1
C-E 1
D-G 1
F-G 1
A-B 2
E-B 3
D-E 3
G-E 3
E-F 4
B-C 5
B-D 11
C-F 15

41

Cycle?

White and green colorings for
vertices show cut being implicitly
utilized by Kruskal’s algorithm.

Kruskal’s Demo
Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

B

C

D

E

F

G

As

MST: [A-C, C-E, D-G, F-G, A-B, D-E]

5
2

1

15

3

3
11

3

1

1

A-C 1
C-E 1
D-G 1
F-G 1
A-B 2
E-B 3
D-E 3
G-E 3
E-F 4
B-C 5
B-D 11
C-F 15

41
Cycle? No.

V-1 edges, so we’re done!

Kruskal’s Demo
Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

Kruskal’s Algorithm
Initially mark all edges gray.

• Consider edges in increasing order of weight.
• Add edge to MST (mark black) unless doing so creates a cycle.
• Repeat until V-1 edges.

Why does Kruskal’s work? Special case of generic MST algorithm
(similar proof to Prim’s).

• Suppose we add edge e = v->w.
• Side 1 of cut is all vertices connected to v, side 2 is everything

else.
• No crossing edge is black (since we don’t allow cycles).
• No crossing edge has lower weight (consider in increasing order).

How do we implement Kruskal’s? Add the edges to a PQ (instead of
vertices) and remove them one by one, checking for cycles, until V-1
edges have been added to the MST.

Worksheet time!
• Run Kruskal’s on this graph.

Edge
0-1
3-5
1-4
7-8
5-7
6-8
0-2
3-6
3-7
1-2
2-3
3-8
4-5
4-3
2-6
1-3

Weight
8
8
9
9
11
11
12
12
12
13
14
16
19
20
21
25

Worksheet answer

Kruskal’s code and runtime

Kruskal’s Implementation (Pseudocode)
public class KruskalMST {
 private List<Edge> mst = new ArrayList<Edge>();

 public KruskalMST(EdgeWeightedGraph G) {
 MinPQ<Edge> pq = new MinPQ<Edge>();
 for (Edge e : G.edges()) {
 pq.insert(e);
 }
 WeightedQuickUnionPC uf =
 new WeightedQuickUnionPC(G.V());
 while (!pq.isEmpty() && mst.size() < G.V() - 1)
{
 Edge e = pq.delMin();
 int v = e.from();
 int w = e.to();
 if (!uf.connected(v, w)) {
 uf.union(v, w);
 mst.add(e);
} } } }

Run time is O(Elog(E)) if edges are not
pre-sorted

We don’t cover this data structure
(quick union) in the course, see
resources slide for more

Storing edges in PQ

Kruskal’s Runtime
Kruskal’s algorithm on previous slide is O(E log E).

Note 1: If we use a pre-sorted list of edges (instead of a PQ), then we can simply iterate through the list in O(E) time (no need
to delete minimum), so overall runtime is O(E + V log* V + E log* V) = O(E log* V).

Note 2: E < V2, so log E < log V2 = 2 log V, so O(E log E) = O(E log V). So while Kruskal's algorithm will be slower than Prim's
algorithm for a worst-case unsorted set of edges, it won't be asymptotically slower.

Operation Number of Times Time per Operation Total Time

Insert E O(log E) O(E)

Delete minimum O(E) O(log E) O(E log E)

union O(V) O(log* V) O(V log* V)

isConnected O(E) O(log* V) O(E log* V)

Fast heap construction algorithm

O(E) if edges pre-sorted

Prim’s vs. Kruskal’s (visual)

https://www.youtube.com/watch?v=vmWSnkBVvQ0

Shortest Paths and MST Algorithms Summary

Problem Algorithm Runtime (if E > V) Notes

Shortest Paths Dijkstra’s O(E log V) Fails for negative
weight edges.

MST Prim’s O(E log V) Analogous to
Dijkstra’s.

MST Kruskal’s with pre-
sorted edges

O(E log* V) Uses weighted
quick-union with
path compression

Lecture 24 wrap-up
• Exit ticket: https://forms.gle/f8JTReRSY4ACCvm77

• HW10: Text Generator due Tues 11:59pm

• Make up your quiz 4:30-5p today

• Next week: Zoom class

• Tues: Course evals 2:45-3pm, 3-4pm Careers panel

‣ Presubmit 3 questions for lab credit - https://forms.gle/ovPsmjszbuLUc9vYA

• Thurs: Final project pt 0 check-ins

‣ Sign up for 10 min slot (2:50-4:20) - https://calendly.com/jingyili/cs62-check-in

• This is all the material on checkpoint 3! Checkpoint 3 on Monday, May 5th.

• Lab next week will be checkpoint 3 review lead by TAs

https://forms.gle/f8JTReRSY4ACCvm77
https://forms.gle/ovPsmjszbuLUc9vYA
https://calendly.com/jingyili/cs62-check-in

Resources
• Graph history: https://cs.pomona.edu/classes/cs62/history/graphs

• Learn more about Dijkstra, Prim, and Kruskal

• Recommended Textbook: Chapter 4.3 (Pages 604-629)

• Website: https://algs4.cs.princeton.edu/43mst/

• Visualization: https://visualgo.net/en/mst

• Weighted quick union: https://joshhug.gitbooks.io/hug61b/content/chap9/
chap94.html

• Practice problem behind this slide

https://cs.pomona.edu/classes/cs62/history/graphs
https://algs4.cs.princeton.edu/43mst/
https://visualgo.net/en/mst
https://joshhug.gitbooks.io/hug61b/content/chap9/chap94.html
https://joshhug.gitbooks.io/hug61b/content/chap9/chap94.html

Problem 1
• Run Kruskal's and Prim's algorithm (starting at index 0) on the following graph:

Answer 1
• Run Kruskal's and Prim's algorithm (starting at index 0) on the following graph.

• Both will provide the same MST:

Problem 2
• Run Kruskal’s on this graph

Answer 2
Consider edges in ascending order of weight.

・Add next edge to tree T unless doing so would create a cycle.

19

Kruskal's algorithm demo

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

5

4

7

1
3

0

2

6

a minimum spanning tree

・Start with vertex 0 and greedily grow tree T.

・Add to T the min weight edge with exactly one endpoint in T.

・Repeat until V - 1 edges.

3

Prim's algorithm demo

5

4

7

1
3

0

2

6

0-7 0.16
2-3 0.17
1-7 0.19
0-2 0.26
5-7 0.28
1-3 0.29
1-5 0.32
2-7 0.34
4-5 0.35
1-2 0.36
4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58
6-4 0.93

an edge-weighted graph

Problem 3
• Run Prim’s on this graph

starting at 0

Answer 3
・Start with vertex 0 and greedily grow tree T.

・Add to T the min weight edge with exactly one endpoint in T.

・Repeat until V - 1 edges.

18

Prim's algorithm demo

5

4

7

1
3

0

2

6

0-7 1-7 0-2 2-3 5-7 4-5 6-2

MST edges

