
CS62 Class 23: Shortest paths
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Hashtable review
Insert the keys into both a separate chaining and open addressing (with linear 
probing) hashtable M = 5. Assume the hash function h(k) = k % M. Assume no resizing. 

      1, 12, 22, 32, 42 

1) What is the length of the longest chain? 

2) What is the average number of probes per insertion?



Hashtable review
Insert the keys into both a separate chaining and open addressing (with linear 
probing) hashtable M = 5. Assume the hash function h(k) = k % M. Assume no resizing. 

      1, 12, 22, 32, 42 

1) What is the length of the longest chain? - 4 
2) What is the average number of probes per insertion? - 2.2

separate chaining
open addressing

1 12

22

32

42

1 12 22 32

Probes: 1 (1) + 1 (12) + 2 (32) + 3 (42) + 4 (42) = 
(1+1+2+3+4)/5 = 2.2

42



Graph Problems

Problem Problem Description Solution Efficiency (adj. list)

s-t paths Find a path from s to every 
reachable vertex.

DFS O(V+E) time 
Θ(V) space

s-t shortest 
paths

Find a shortest path from s 
to every reachable vertex.

BFS
O(V+E) time 
Θ(V) space

Last time, saw two ways to find paths in a graph, DFS & BFS. 

Give an example of a graph that would make the space efficiency bad for DFS or BFS. 



BFS vs. DFS for space efficiency 
• DFS is worse for spindly graphs. 

• Call stack gets very deep.  
• Computer needs Θ(V) memory to remember recursive calls. 

• BFS is worse for absurdly “bushy” graphs. 
• Queue gets very large. In worst case, queue will require Θ(V) memory. 
• Example: 1,000,000 vertices that are all connected. 999,999 will be enqueued at 

once. 
• Note: In our implementations, we have to spend Θ(V) memory anyway to track 

distTo and edgeTo arrays. 
• Can optimize by storing distTo and edgeTo in a map instead of an array.



Strongly connected digraph algorithm
• A strongly connected digraph is a directed graph in which it is possible to reach any 

vertex starting from any other vertex by traversing edges. 

• Pick a random starting vertex s. 

• Run DFS/BFS starting at s. 

• If have not reached all vertices, return false. 

• Reverse edges. 

• Run DFS/BFS again on reversed graph. 

• If have not reached all vertices, return false. 

• Else return true.



Agenda
• Edge-weighted graphs 

• Shortest paths 

• Dijkstra’s algorithm



Edge-weighted graph



Edge-weighted graphs
• Edge-weighted digraph: a digraph where we 

associate weights/costs with each edge. 

• Shortest path from vertex s to vertex t: a directed 
path from s to t with the property that no other 
such path has a lower weight (total weight sum of 
edges it consists of). 

• Assumptions:  

• Not all vertices need to be reachable. 

• Weights are positive. 

• Shortest paths are not necessarily unique but 
they are simple.



Weighted directed edge API
• public class DirectedEdge
• DirectedEdge(int v, int w, double weight)
‣ Constructs a weighted edge from v to w (v->w) with the provided weight. 

• int from()
‣ Returns vertex source of this edge. 

• int to()
‣ Returns vertex destination of this edge. 

• double weight()
‣ Returns weight of this edge. 

• String toString()
‣ Returns the string representation of this edge.

only difference is we now have weights



Weighted directed edge in Java
public class DirectedEdge { 
    private final int v;
    private final int w;
    private final double weight;

   public DirectedEdge(int v, int w, double weight) {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

   public int from() {
        return v;
    }

    public int to() {
        return w;
    }

    public double weight() {
        return weight;
    }



Edge-weighted digraph API
• public class EdgeWeightedDigraph

• EdgeWeightedDigraph(int v)
‣ Constructs an edge-weighted digraph with v vertices. 

• void addEdge(DirectedEdge e)
‣ Add weighted directed edge e. 

• Iterable<DirectedEdge> adj(int v)
‣ Returns edges adjacent from v. 

• int V()
‣ Returns number of vertices. 

• int E()
‣ Returns number of edges. 

• Iterable<DirectedEdge> edges()
‣ Returns all edges.

only difference is edges are DirectedEdge 
objects instead of integers



Edge-weighted digraph adjacency list representation
• public class EdgeWeightedDigraph
• EdgeWeightedDigraph(int v)

• Constructs an edge-weighted digraph 
with V vertices. 

• void addEdge(DirectedEdge e)

• Add weighted directed edge e. 

• Iterable<DirectedEdge> adj(int v)

• Returns edges adjacent from v. 

• int V()

• Returns number of vertices. 

• int E()

• Returns number of edges. 

• Iterable<DirectedEdge> edges()

• Returns all edges.



Edge-weighted digraph in Java
public class EdgeWeightedDigraph {
    private final int V;                // number of vertices in this digraph
    private int E;                      // number of edges in this digraph
    private SinglyLinkedList<DirectedEdge> adj[];  
    // adj[v] = adjacency list for v
   
    public EdgeWeightedDigraph(int V) {
       this.V = V;
       this.E = 0;
       adj = new SinglyLinkedList<DirectedEdge>[V];
        for (int v = 0; v < V; v++)
            adj[v] = new SinglyLinkedList<DirectedEdge>();
    }
    public void addEdge(DirectedEdge e) {
        int v = e.from();
        int w = e.to();
        adj[v].add(e);
        E++;
    }

   public Iterable<DirectedEdge> adj(int v) {
       return adj[v];
    }

DirectedEdge instead of int

extract v & w with .from() and .to() getters



Shortest paths



BreadthFirstSearch for Google Maps
BFS would not be a good choice for a google maps style navigation application. 

• The problem: BFS returns path with shortest number of edges, not necessarily 
the shortest path. 

• That’s why we need an edge-weighted graph.
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BFS answer Correct shortest path



Shortest Path variants
• Single source: from one vertex s to every other vertex. 

• Single sink: from every vertex to one vertex t. 

• Source-sink: from one vertex s to another vertex t. 

• All pairs: from every vertex to every other vertex. 

• What version is there in Google Maps?



Shortest Paths Assumptions
• Not all vertices need to be reachable. 

• We will assume so in this lecture. 

• Weights are non-negative.  

• There are algorithms that can handle negative weights. 

• Shortest paths are not necessarily unique but they are simple.



Worksheet time!
Find the shortest paths from source vertex s to every other vertex. (Single source shortest path)
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What data structure does your path look like?

How many edges, as a function of V, are in it?

What algorithm did you as a human come up with?



Worksheet answers
Find the shortest paths from source vertex s to every other vertex. (Single source shortest path)
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What data structure does your path look like?

How many edges, as a function of V, are in it?

A tree

E = V-1 (7 vertices, 6 edges) 



SPT Edge Count
If G is a connected edge-weighted graph with V vertices and E edges, there are 
exactly V-1 edges are in the Shortest Paths Tree (SPT) of G, assuming every vertex is 
reachable.

B

C

D

E

F

G

As



Dijkstra’s Algorithm  
(bad examples)



Creating an Algorithm 
Let’s create an algorithm for finding the shortest paths. 

Will start with a bad algorithm and then successively improve it. 

• Algorithm begins in state below. All vertices unmarked. All distances infinite. No 
edges in the SPT.
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Bad Algorithm #1 (Inspired by BFS)
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Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove a vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe.



Bad Algorithm #1 (Inspired by BFS)
Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove a vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe.
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Fringe: [A]



Bad Algorithm #1 (Inspired by BFS)
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Fringe: [A] 
Removed vertex: A

Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove a vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe.



Bad Algorithm #1 (Inspired by BFS)
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Fringe: [A, B, C] 
Removed vertex: A

Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove a vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe.



Bad Algorithm #1 (Inspired by BFS)
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Fringe: [A, B, C] 
Removed vertex: B

Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove a vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe.



Bad Algorithm #1 (Inspired by BFS)
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The edge B→A is not 
added to SPT, 
because A is already 
part of the SPT.

Fringe: [A, B, C, D] 
Removed vertex: B

Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove a vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe.



Bad Algorithm #1 (Inspired by BFS)
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Fringe: [A, B, C, D] 
Removed vertex: C

Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove a vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe.



Bad Algorithm #1 (Inspired by BFS)
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7 Nothing happens.  

C→B not added, B 
already in SPT. 

C→D not added, D 
already in SPT. 

Fringe: [A, B, C, D] 
Removed vertex: C

Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove a vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe.



Bad Algorithm #1 (Inspired by BFS)
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Fringe: [A, B, C, D] 
Removed vertex: D

Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove a vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe.



Bad Algorithm #1 (Inspired by BFS)
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Fringe: [A, B, C, D] 
Removed vertex: D

Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove a vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe.

Nothing happens.  

D has no neighbors 
(there are no edges 
going out of D).



Bad Algorithm #1 (Inspired by BFS)
Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove a vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe. 

Takeaways: 

• This algorithm would work if all our edges were the same length.

Algorithm #1 (BFS) visits: 
         every node 1 edge away, 
then every node 2 edges away, 
then every node 3 edges away, etc.



Bad Algorithm #2 (Dummy Nodes)
Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every 
unit along an edge, then run breadth-first search. 

• When we hit one of our original nodes, add edge to the SPT.
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Bad Algorithm #2 (Dummy Nodes)
Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every 
unit along an edge, then run breadth-first search. 

• When we hit one of our original nodes, add edge to the SPT.
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Bad Algorithm #2 (Dummy Nodes)
Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every 
unit along an edge, then run breadth-first search. 

• When we hit one of our original nodes, add edge to the SPT.
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Bad Algorithm #2 (Dummy Nodes)
Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every 
unit along an edge, then run breadth-first search. 

• When we hit one of our original nodes, add edge to the SPT.
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Bad Algorithm #2 (Dummy Nodes)
Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every 
unit along an edge, then run breadth-first search. 

• When we hit one of our original nodes, add edge to the SPT.
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Bad Algorithm #2 (Dummy Nodes)
Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every 
unit along an edge, then run breadth-first search. 

• When we hit one of our original nodes, add edge to the SPT.

B

C

As

5

5
D1

1

0

2

2
2

1

B

C

As D

1

0

2

44

Order of visited nodes: ACBD



Bad Algorithm #2 (Dummy Nodes)
Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every 
unit along an edge, then run breadth-first search. 

• When we hit one of our original nodes, add edge to the SPT.
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Order of visited nodes: ACBD



Bad Algorithm #2 (Dummy Nodes)
Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every 
unit along an edge, then run breadth-first search. 

Takeaways: 

• It works, but can be really slow. For example, consider the graph below. 
• What if we measured in inches instead of miles? Or had fractional weights?
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Bad Algorithm #2 (Dummy Nodes)
Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every 
unit along an edge, then run breadth-first search. 

Takeaways: 

• Algorithm #2 order is sometimes called best-first order. 
• Let's try to visit the nodes in the same order as Algorithm #2 did, but without 

creating dummy nodes.

Algorithm #1 (BFS) visits: 
         every node 1 edge away, 
then every node 2 edges away, 
then every node 3 edges away, etc.

Algorithm #2 (dummy nodes) visits: 
         every node distance 1 away, 
then every node distance 2 away, 
then every node distance 3 away, etc.



Bad Algorithm #3 (Best-First Search)
Bad algorithm #3: Perform best-first search. 

• Similar to BFS, but we remove the closest edge from the fringe each time. 
• We can use a priority queue to track the closest edge.
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Bad Algorithm #3 (Best-First Search)
Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove the closest vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe.

Fringe: [A=0]
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Only difference from Algorithm #1: 
We added the word "closest".



Bad Algorithm #3 (Best-First Search)
Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove the closest vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe.

Fringe: [A=0] 
Removed vertex: A
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Bad Algorithm #3 (Best-First Search)
Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove the closest vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5] 
Removed vertex: A
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Bad Algorithm #3 (Best-First Search)
Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove the closest vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5] 
Removed vertex: C
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In BFS, we removed B 
here, but in best-first, 
we're removing C 
because it's closer.



Bad Algorithm #3 (Best-First Search)
Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove the closest vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5, D=6] 
Removed vertex: C
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Bad Algorithm #3 (Best-First Search)
Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove the closest vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5, D=6] 
Removed vertex: B
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Bad Algorithm #3 (Best-First Search)
Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove the closest vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5, D=6] 
Removed vertex: B

The only outgoing edge 
is B→D. 
D is already part of the 
SPT, so do nothing. ∞
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Bad Algorithm #3 (Best-First Search)
Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove the closest vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5, D=6] 
Removed vertex: D
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Bad Algorithm #3 (Best-First Search)
Add the start (A) to the fringe. 

While fringe is not empty: 

     Remove the closest vertex from the fringe and mark it. 

     For each outgoing edge v→w: if w is not already part of SPT, 
     add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5, D=6] 
Removed vertex: D

No outgoing edges 
from D, so do nothing.
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Bad Algorithm #3 (Best-First Search)
Bad algorithm #3: Perform best-first search. 

• Similar to BFS, but we remove the closest edge from the fringe each time. 
• We can use a priority queue to track the closest edge. 

Takeaways: 

• Pro: We visited the nodes in best-first order (same order as in Algorithm #2), 
without creating dummy nodes. 

• Con: We got the wrong answer. Why? 
• Let's revisit the step where things went wrong.



Bad Algorithm #3 (Best-First Search)
For each outgoing edge v→w: if w is not already part of SPT, add the edge, 
mark w, and add w to fringe.

Fringe: [A=0, C=1, B=5, D=6] 
Removed vertex: C

• We should have added edge C→B, and thrown 
out the old edge (A→B) to B. Why?

• The distance to B via C→B is 2. 

This is better than the currently best known 
distance to B (5, via A→B).

C→B edge: B was in the SPT (via A→B), so we did nothing. 

What should we have done here?
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Finding a Shortest Paths Tree Algorithmically
Dijkstra's Algorithm: 

• So far, we've added an edge v→w if w is not already part of the SPT. 
• Instead, we should add an edge if that edge yields better distance. 
• Use the priority queue to track best known distances.
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We'll call this 
process “edge 
relaxation”.



Finding a Shortest Paths Tree Algorithmically
Add all vertices to the fringe. 

While fringe is not empty: 

     Remove the closest vertex from the fringe and mark it. 

     For each outgoing edge v→w: if the edge gives a better distance to w,  
     add the edge, and update w in the fringe.

Fringe: [A=0, B=∞, C=∞, D=∞]
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Key difference from Algorithm #3: 
The condition for adding an edge. 
(This used to say "if w not in SPT").

Extra bookkeeping: Instead of 
adding to the fringe as we go, we'll 
add all vertices to start. 
This lets us track the best known 
distance to each vertex.



Finding a Shortest Paths Tree Algorithmically
Add all vertices to the fringe. 

While fringe is not empty: 

     Remove the closest vertex from the fringe and mark it. 

     For each outgoing edge v→w: if the edge gives a better distance to w,  
     add the edge, and update w in the fringe.

Fringe: [A=0, B=∞, C=∞, D=∞] 
Removed vertex: A
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Finding a Shortest Paths Tree Algorithmically
Add all vertices to the fringe. 

While fringe is not empty: 

     Remove the closest vertex from the fringe and mark it. 

     For each outgoing edge v→w: if the edge gives a better distance to w,  
     add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=5, D=∞] 
Removed vertex: A
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Finding a Shortest Paths Tree Algorithmically
Add all vertices to the fringe. 

While fringe is not empty: 

     Remove the closest vertex from the fringe and mark it. 

     For each outgoing edge v→w: if the edge gives a better distance to w,  
     add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=5, D=∞] 
Removed vertex: C
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Finding a Shortest Paths Tree Algorithmically
Add all vertices to the fringe. 

While fringe is not empty: 

     Remove the closest vertex from the fringe and mark it. 

     For each outgoing edge v→w: if the edge gives a better distance to w,  
     add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=2, D=6] 
Removed vertex: C

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

5

1

6

2
Improvement: We used C→B because 
the distance via C→B (2) is better than 
the distance via A→B (5). 
This also means we throw out the old 
edge (A→B) to B.



Finding a Shortest Paths Tree Algorithmically
Add all vertices to the fringe. 

While fringe is not empty: 

     Remove the closest vertex from the fringe and mark it. 

     For each outgoing edge v→w: if the edge gives a better distance to w,  
     add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=2, D=6] 
Removed vertex: B

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

5

1

6

2



Finding a Shortest Paths Tree Algorithmically
Add all vertices to the fringe. 

While fringe is not empty: 

     Remove the closest vertex from the fringe and mark it. 

     For each outgoing edge v→w: if the edge gives a better distance to w,  
     add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=2, D=4] 
Removed vertex: B

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

5

1

6

2B→A (total=4) is not better than the 
best known way to A (0). 

B→D (total=4) is better than the best 
known way to D (6, via C→D). 
So, we'll update the path to D.

4



Finding a Shortest Paths Tree Algorithmically
Add all vertices to the fringe. 

While fringe is not empty: 

     Remove the closest vertex from the fringe and mark it. 

     For each outgoing edge v→w: if the edge gives a better distance to w,  
     add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=2, D=4] 
Removed vertex: D

∞

B

C

As

5

5
D1

∞
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∞

2
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1

5

1

6
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4



Finding a Shortest Paths Tree Algorithmically
Add all vertices to the fringe. 

While fringe is not empty: 

     Remove the closest vertex from the fringe and mark it. 

     For each outgoing edge v→w: if the edge gives a better distance to w,  
     add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=2, D=4] 
Removed vertex: D

No outgoing edges 
from D, so do nothing.

∞
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Dijkstra’s Algorithm 



Dijkstra’s Demo
Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source. 

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As
5

2

1

15

3

2
11

5

1

1

4

0

∞
∞

∞

∞

∞

∞

1



Dijkstra’s Demo

B

C

D

E

F

G

As

Node  distTo    edgeTo
A        0        -
B        ∞        -
C        ∞        -
D        ∞        -
E        ∞        -
F        ∞        -
G        ∞        -

5
2

1

15

3

2
11

5

1

1

Fringe: [(B: ∞), (C: ∞), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]

4

0

∞
∞

∞

∞

∞

∞

1

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source. 

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



B

C

D

E

F

G

As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        ∞        -
E        ∞        -
F        ∞        -
G        ∞        -

5
2

1

15

3

2
11

5

1

1

Fringe: [(C: 1), (B: 2), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]

4

0
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∞
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∞

∞

∞

1

2

1

Dijkstra’s Demo
Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source. 

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



B

C

D

E

F

G

As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        ∞        -
E        ∞        -
F        ∞        -
G        ∞        -

5
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1

15

3

2
11

5

1

1

Fringe: [(B: 2), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]

4

0

∞

∞

∞

∞

1
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Dijkstra’s Demo
Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source. 

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



B

C

D

E

F

G

As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        ∞        -
E        ∞        -
F        16       C
G        ∞        -

5
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1

15

3

2
11

5

1

1

Fringe: [(B: 2), (F: 16), (D: ∞), (E: ∞), (G: ∞)]

4
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∞

1

2

16
1

Dijkstra’s Demo
Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source. 

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



B

C

D

E

F

G

As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        ∞        -
E        ∞        -
F        16       C
G        ∞        -

5
2

1

15

3

2
11

5

1

1

Fringe: [(F: 16), (D: ∞), (E: ∞), (G: ∞)]
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∞
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Dijkstra’s Demo
Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source. 

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



B

C

D

E

F

G

As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        13       B
E        5        B
F        16       C
G        ∞        -
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2
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5

1

1

Fringe: [(E: 5), (D: 13), (F: 16), (G: ∞)]
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1

Vertex C unchanged since 2+5 > 1 

Which vertex is 
removed next?

Dijkstra’s Demo
Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source. 

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



B

C

D

E

F

G

As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        13       B
E        5        B
F        16       C
G        ∞        -

5
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3

2
11

5

1

1

Fringe: [(D: 13), (F: 16), (G: ∞)]
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Dijkstra’s Demo
Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source. 

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



B

C

D

E

F

G

As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        13       B
E        5        B
F        16       C
G        ∞        -

5
2

1

15

3

2
11

5

1

1

Fringe: [(D: 13), (F: 16), (G: ∞)]

4

0
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5
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1

Worksheet time!
Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source. 

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

• Show distTo, edgeTo, and fringe after relaxation.



B

C

D

E

F

G

As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        13       B
E        5        B
F        9        E
G        10       E

5
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3

2
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5

1

1

Fringe: [(F: 9), (G: 10), (D: 13)]
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1 9

10

Vertex C unchanged since 5+1 > 1 

Worksheet answers
Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source. 

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Dijkstra’s Demo

B

C

D

E

F

G

As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        13       B
E        5        B
F        9        E
G        10       E

5
2

1
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2
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1

1

Fringe: [(G: 10), (D: 13)]
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Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source. 

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Dijkstra’s Demo

B

C

D

E

F

G

As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        11       G
E        5        B
F        9        E
G        10       E

5
2

1

15

3

2
11

5

1

1

Fringe: [(D: 11)]
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Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source. 

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Dijkstra’s Demo

B

C

D

E

F

G

As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        11       G
E        5        B
F        9        E
G        10       E

5
2

1

15

3

2
11

5

1

1

Fringe: []
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1
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5

11

1

9

10

Vertex E unchanged since 11 + 2 > 5 
Note: If non-negative weights, impossible for any inactive 
vertex (white, not on fringe) to be improved!

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source. 

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Dijkstra’s Demo

B

C

D

E

F

G

As

Node  distTo    edgeTo
A        0        -
B        2        A
C        1        A
D        11       G
E        5        B
F        9        E
G        10       E

5
2

1

15

3

2
11

5

1

1

Fringe: []

41

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source. 

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Worksheet time!
• Run Dijkstra’s algorithm to generate the shortest path tree from s below. 



Worksheet answers!
• Run Dijkstra’s algorithm to generate the shortest path tree from s below.  

• For a full walkthrough, see the slides in the appendix 



Dijkstra’s Implementation 



Dijkstra’s Algorithm Pseudocode

Key invariants: 

• edgeTo[v] is the best known predecessor of v. 

• distTo[v] is the best known total distance 
from source to v. 

• PQ contains all unvisited vertices in order of 
distTo. 

Important properties: 

• Always visits vertices in order of total 
distance from source. 

• Relaxation always fails on edges to already 
visited vertices. 

Dijkstra’s: 
• PQ.add(source, 0) 
• For other vertices v, PQ.add(v, infinity) 
• While PQ is not empty: 

• p = PQ.removeSmallest() 
• Relax all edges from p 

Relaxing an edge p → q with weight w: 
• If distTo[p] + w < distTo[q]: 

• distTo[q] = distTo[p] + w 
• edgeTo[q] = p 
• PQ.changePriority(q, distTo[q])



Framework for shortest-paths algorithm
public class DijkstraSP {
    private double[] distTo;          // distTo[v] = distance  of shortest s->v path
    private DirectedEdge[] edgeTo;    // edgeTo[v] = last edge on shortest s->v path
    private IndexMinPQ<Double> pq;    // priority queue of vertices

    public DijkstraSP(EdgeWeightedDigraph G, int s) {
        distTo = new double[G.V()];
        edgeTo = new DirectedEdge[G.V()];

        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;

        // relax vertices in order of distance from s
        pq = new IndexMinPQ<Double>(G.V());
        pq.insert(s, distTo[s]);
        while (!pq.isEmpty()) {
            int v = pq.delMin();
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }
    }

    // relax edge e and update pq if changed
    private void relax(DirectedEdge e) {
        int v = e.from(), w = e.to();
        if (distTo[w] > distTo[v] + e.weight()) {
            distTo[w] = distTo[v] + e.weight();
            edgeTo[w] = e;
            if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
            else                pq.insert(w, distTo[w]);
        }
    }



Dijkstra’s Algorithm Runtime
Priority Queue operation count, assuming min-binary heap based PQ: 

• add: max V times, each costing O(log V) time. 
• removeSmallest: max V times, each costing O(log V) time. 
• changePriority: max E times, each costing O(log V) time. 

Overall runtime: O(V*log(V) + V*log(V) + E*logV).  

• Assuming E > V, this is just O(E log V) for a connected graph.

# Operations Cost per operation Total cost

PQ add V O(log V) O(V log V)

PQ removeSmallest V O(log V) O(V log V)

PQ changePriority E O(log V) O(E log V)



Lecture 23 wrap-up
• HW9: Transplant Manager due 11:59pm  

• Last(!) HW (10, text generator), quiz, & graded lab this week 

• Next week: Zoom class 

• Tues: Course evals 2:45-3pm, 3-4pm Careers panel (Google, CS PhD, video game company) 

• Thurs: Final project pt 1 check-ins (more in lab tomorrow!), sign up for 10 min slot

Resources
• Recommended Textbook: Chapter 4.4 (Pages 638-676) 

• Website: https://algs4.cs.princeton.edu/44sp/ 

• Visualization: https://visualgo.net/en/sssp  

•  Practice problems behind this slide

https://algs4.cs.princeton.edu/44sp/
https://visualgo.net/en/sssp


Problem 1
• Run Dijkstra’s algorithm on the following graph with 0 being the starting 

vertex.



Answer 1
• Run Dijkstra’s algorithm on the following graph with 0 being the starting 

vertex.

v distTo[] edgeTo[]

0 0 -

1 8 0->1

2 12 0->2

3 26 2->3

4 46 3->4

5 34 3->5

6 33 3->6

7 38 3->7

8 42 3->8



Problem 2
Run Dijkstra’s algorithm on the following graph with 0 being the starting 
vertex. 
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Answer 2

v distTo[] edgeTo[]

0 0 -

1 6 3->1

2 2 0->2

3 4 2->3

4 5 3->4

5 8 6->5

6 6 4->6

7 11 5->7

0
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Problem 3
Dijkstra’s algorithm is guaranteed to be optimal so long as there are no 
negative edges. Sketch a proof by induction proving why.  

• Hint: The proof relies on the property that relaxation always fails on edges 
to visited (white) vertices. 



Answer 3
Proof sketch: Assume all edges have non-negative weights. 

• At start, distTo[source] = 0, which is optimal. 

• After relaxing all edges from source, let vertex v1 be the vertex with minimum 
weight, i.e. that is closest to the source. Claim: distTo[v1] is optimal, and thus 
future relaxations will fail. Why?  

• distTo[p]         ≥ distTo[v1] for all p, therefore 

• distTo[p] + w ≥ distTo[v1] 

• Can use induction to prove that this holds for all vertices after dequeuing.



Worksheet #3 full 
walkthrough



TEXT 95

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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4

7

1 3

5
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6

s

69
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4
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1

5
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15

312

20

13

11

9

an edge-weighted digraph

0→1   5.0 

0→4   9.0 

0→7   8.0 

1→2  12.0 

1→3  15.0 

1→7   4.0 

2→3   3.0 

2→6  11.0 

3→6   9.0 

4→5   4.0 

4→6  20.0 

4→7   5.0 

5→2   1.0 

5→6  13.0 

7→5   6.0 

7→2   7.0



TEXT 96

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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choose source vertex 0

v   distTo[]  edgeTo[] 

0     0.0        - 

1                   
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4            
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TEXT 97

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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relax all edges adjacent from 0
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∞
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v   distTo[]  edgeTo[] 

0     0.0        - 

1                   
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TEXT 98

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

∞

Dijkstra's algorithm demo
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relax all edges adjacent from 0
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v   distTo[]  edgeTo[] 

0     0.0        - 

1     5.0       0→1  

2             
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4     9.0       0→4  
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7     8.0       0→7 
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TEXT 99

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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choose vertex 1

v   distTo[]  edgeTo[] 

0     0.0        - 

1     5.0       0→1  

2             
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4     9.0       0→4  
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7     8.0       0→7 



TEXT 100

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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relax all edges adjacent from 1

v   distTo[]  edgeTo[] 

0     0.0        - 

1     5.0       0→1  
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TEXT 101

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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relax all edges adjacent from 1

v   distTo[]  edgeTo[] 

0     0.0        - 

1     5.0       0→1  

2    17.0       1→2  

3    20.0       1→3  

4     9.0       0→4  
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7     8.0       0→7 
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TEXT 102

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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choose vertex 7

v   distTo[]  edgeTo[] 

0     0.0        - 

1     5.0       0→1  

2    17.0       1→2  

3    20.0       1→3  

4     9.0       0→4  

5 

6 

7     8.0       0→7 



TEXT 103

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

∞

Dijkstra's algorithm demo

12

0

4

7

1 3

5

2

6

relax all edges adjacent from 7

v   distTo[]  edgeTo[] 

0     0.0        - 

1     5.0       0→1  

2    17.0       1→2  

3    20.0       1→3  

4     9.0       0→4  
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7     8.0       0→7 
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TEXT 104

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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relax all edges adjacent from 7

v   distTo[]  edgeTo[] 

0     0.0        - 

1     5.0       0→1  

2    15.0       7→2  

3    20.0       1→3  

4     9.0       0→4  

5    14.0       7→5  
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7     8.0       0→7 
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7
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∞ 14
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TEXT 105

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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select vertex 4

v   distTo[]  edgeTo[] 

0     0.0        - 

1     5.0       0→1  

2    15.0       7→2  

3    20.0       1→3  

4     9.0       0→4  

5    14.0       7→5  

6 

7     8.0       0→7 



TEXT 106

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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v   distTo[]  edgeTo[] 

0     0.0        - 

1     5.0       0→1  

2    15.0       7→2  

3    20.0       1→3  

4     9.0       0→4  

5    14.0       7→5  
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7     8.0       0→7 

relax all edges adjacent from 4
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9 ∞



TEXT 107

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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0     0.0        - 

1     5.0       0→1  

2    15.0       7→2  
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6    29.0       4→6  
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

34

0

4

7

1

5

2

6

v   distTo[]  edgeTo[] 

0     0.0        - 

1     5.0       0→1  

2    14.0       5→2  

3    17.0       2→3  

4     9.0       0→4  

5    13.0       4→5  

6    25.0       2→6  

7     8.0       0→7 

3

shortest-paths tree from vertex s

s


