
CS62 Class 23: Directed Acyclic Graphs
Graphs



Agenda
• Directed acyclic graphs 

• Topological sorts 

• Shortest paths on DAGs 

• Longest paths 

• DAGs in the wild (a research project example)



Reminder: graph algos so far
Problem Problem Description Solution Efficiency

paths Find a path from s to every 
reachable vertex.

DFS O(V+E) time 
Θ(V) space

shortest paths Find the shortest path from s 
to every reachable vertex.

BFS O(V+E) time 
Θ(V) space

shortest 
weighted paths

Find the shortest path, 
considering weights, from s to 
every reachable vertex.

Dijkstra’s O(E log V) time 
Θ(V) space

minimum 
spanning tree

Find the minimum spanning 
tree.

Prim’s O(E log V) time 
Θ(V) space

minimum 
spanning tree

Find the minimum spanning 
tree.

Kruskal’s O(E log E) time 
Θ(E) space



Directed Acyclic Graphs



How to determine if a graph has cycles?
• Given a undirected graph, determine if it contains any cycles. What is its runtime? 

• May use any data structure or algorithm from the course so far.
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How to determine if a graph has cycles?
• Given a undirected graph, determine if it contains any cycles. What is its runtime? 

• May use any data structure or algorithm from the course so far.

B
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E

F

GA

• One possible approach: Do DFS from A (arbitrary vertex). 

• Keep going until you see a marked vertex. 

• Potential danger: 

‣ B looks back at A and sees marked. 

• Solution: Just don’t count the node you came from. 

• Worst case runtime: O(V + E). 

• With some cleverness, can give a tighter bound of O(V) (the number of edges we 
check is at most V, so O(V+E) = O(V))



Directed acyclic graph

• Property: A directed graph has a cycle if and only if its depth-first search reveals a 
back edge. 

• A graph without cycles is acyclic. 

• DAGs are good for modeling dependencies: before you do C, you have to do A; before 
you do A, you have to do B. 

• A linearization or a topological sort of a DAG is an ordering of its vertices so that for 
every directed edge from vertex u to vertex v, u comes before v in the ordering.

Q: This DAG has… 

• how many sources? 

• how many sinks? 

• how many possible linearizations? 
hint: 1 valid one is B,A,D,C,E,F



Directed acyclic graph

• Property: A directed graph has a cycle if and only if its depth-first search reveals a 
back edge. 

• A graph without cycles is acyclic. 

• DAGs are good for modeling dependencies: before you do C, you have to do A; before 
you do A, you have to do B. 

• A linearization or a topological sort of a DAG is an ordering of its vertices so that for 
every directed edge from vertex u to vertex v, u comes before v in the ordering.

Q: This DAG has… 

• how many sources? 

• how many sinks? 

• how many possible linearizations? 
hint: 1 valid one is B,A,D,C,E,F

1 (A)

2 (E, F)

4. other 3: B,A,D,C,F,E; B,D,A,C,F,E; B,D,A,C,E,F



Topological sorts



Topological Sort

Suppose we have tasks A through H, where an arrow from v to u indicates that v 
must happen before u. 

• What algorithm do we use to find a valid ordering for these tasks? 
• Valid orderings include: [A, C, B, D, F, E, H, G], [C, A, D, F, B, E, G, H], …
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Solution

Perform a DFS traversal from every source vertex. Do NOT clear markings in 
between traversals. 

• Record DFS postorder (left, right, root) in a list. 
• Topological ordering is given by the reverse of that list (reverse postorder).
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Topological Sort (Demo 1/2)
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H
Postorder: [] 
Call stack: A

*
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Postorder: [] 
Call stack: A→B
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Postorder: [] 
Call stack: A→B→E
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Postorder: [H] 
Call stack: A→B→E→H
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Postorder: [H, E] 
Call stack: A→B→E

*
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Postorder: [H, E, B] 
Call stack: A→B

*
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Postorder: [H, E, B] 
Call stack: A
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Postorder: [H, E, B, D] 
Call stack: A→D



Topological Sort (Demo 2/2)

A

B

C

D

E

F

G

H

Postorder: [H, E, B, D] 
Call stack: A→D

*
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Postorder: [H, E, B, D, A] 
Call stack: A

*
A
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Postorder: [H, E, B, D, A] 
Call stack: C

*
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Postorder: [H, E, B, D, A] 
Call stack: C→F

*
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Postorder: [H, E, B, D, A, G] 
Call stack: C→F→G

*A

B
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H
Postorder: [H, E, B, D, A, G, F] 
Call stack: C→F

*
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F

G

H
Postorder: [H, E, B, D, A, G, F, C] 
Call stack: C



Solution

Perform a DFS traversal from every vertex with indegree 0, NOT clearing markings 
in between traversals. 

• Record DFS postorder in a list: [H, E, B, D, A, G, F, C] 
• Topological ordering is given by the reverse of that list (reverse postorder): 

• [C, F, G, A, D, B, E, H]
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Topological Sort

• Topological ordering: [C, F, G, A, D, B, E, H] 

• When nodes are topologically sorted in a diagram, arrows all point rightwards. 

• Be aware, that when people say “Depth First Search”, they sometimes mean with 
restarts, and they sometimes mean without. 

• For example, when we did DFS for reachability, we did not restart. 

• For Topological Sort, we restarted from every vertex with indegree 0 (source).
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Worksheet time!
Give a topological ordering for the DAG below (a.k.a. topological sort). When you 
can choose from multiple vertices, take the one with lower edge weight.  
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Give a topological ordering for the DAG below (a.k.a. topological sort) 

• A, D, B, C, E, F (because DFS postorder was FECBDA)
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Worksheet answer



Topological sorts can only work on DAGs
A topological sort only exists if the graph is a directed acyclic graph (DAG). 

• For the graph below, there is NO possible ordering where all arrows are respected. 

DAGs appear in many real world applications (causalities, hierarchies, temporal dependencies), 
and there are many graph algorithms that only work on DAGs.
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Graph algos so far
Problem Problem Description Solution Efficiency

paths Find a path from s to every 
reachable vertex.

DFS O(V+E) time 
Θ(V) space

shortest paths Find the shortest path from s to 
every reachable vertex.

BFS O(V+E) time 
Θ(V) space

shortest 
weighted paths

Find the shortest path, 
considering weights, from s to 
every reachable vertex.

Dijkstra’s O(E log V) time 
Θ(V) space

minimum 
spanning tree

Find the minimum spanning tree. Prim’s O(E log V) time 
Θ(V) space

minimum 
spanning tree

Find the minimum spanning tree. Kruskal’s O(E log E) time 
Θ(E) space

topological sort Find an ordering of vertices that 
respects edges of our DAG.

DFS from source nodes O(V+E) time 
Θ(V) space

Why? It’s just DFS.



Shortest Paths on DAGs



Shortest Paths Warmup
What is the shortest paths tree for the graph below, using s as the source?                   
In what order will Dijkstra’s algorithm visit the vertices?
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Shortest Paths Warmup
What is the shortest paths tree for the graph below, using s as the source?                  
In what order will Dijkstra’s algorithm visit the vertices? 

• A, B, D, E, F, C
B

D

C

E

FA
s 4

1

2

2

1

1
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Shortest Paths with negative edges
If we allow negative edges, Dijkstra’s algorithm can fail. 

• For example, below we see Dijkstra’s just before vertex C is visited.
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Shortest Paths with negative edges
If we allow negative edges, Dijkstra’s algorithm can fail. 

• For example, below we see Dijkstra’s just before vertex C is visited. 

• Relaxation on E succeeds, but distance to F (now should be -10) will never be 
updated.
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distTo is wrong!



But, shortest paths on DAGs with negative weights will 
work
Try to come up with an algorithm for shortest paths on a DAG that works even if there 
are negative edges. 

• Hint: You should still use the “relax” operation as a basic building block.
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But, shortest paths on DAGs with negative weights will 
work
Try to come up with an algorithm for shortest paths on a DAG that works even if there 
are negative edges. 

• Hint: You should still use the “relax” operation as a basic building block.
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One simple idea: Visit vertices in topological order. 
• On each visit, relax all outgoing edges. 
• Each vertex is visited only when all possible info about it has been used!



The DAG SPT Algorithm: Relax in Topological Order
First: We have to find a topological order, e.g. ADBCEF. Runtime is O(V + E).
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The topological order is just the 
order of the fringe priority queue!



The DAG SPT Algorithm: Relax in Topological Order

Second: We have to visit all the vertices in topological order, relaxing all edges as we 
go. Let’s see a demo.
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DAG SPT Algorithm
Visit vertices in topological order. 

• When we visit a vertex: relax all of its going edges.

    distTo  edgeTo
A      0      -
B      ∞      -
C      ∞      -
D      ∞      -
E      ∞      -
F      ∞      -

Fringe: [A, D, B, C, E, F]

∞
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DAG SPT Algorithm
Visit vertices in topological order. 

• When we visit a vertex: relax all of its going edges.

    distTo  edgeTo
A      0      -
B      ∞      -
C      ∞      -
D      ∞      -
E      ∞      -
F      ∞      -

Fringe: [A, D, B, C, E, F]

∞
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DAG SPT Algorithm
Visit vertices in topological order. 

• When we visit a vertex: relax all of its going edges.

    distTo  edgeTo
A      0      -
B      1      A
C      ∞      -
D      1      A
E      ∞      -
F      ∞      -

Fringe: [A, D, B, C, E, F]

∞
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DAG SPT Algorithm
Visit vertices in topological order. 

• When we visit a vertex: relax all of its going edges.

    distTo  edgeTo
A      0      -
B      1      A
C      ∞      -
D      1      A
E      ∞      -
F      ∞      -

Fringe: [A, D, B, C, E, F]

∞
B

D

C
E

FAs 6 1
1
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DAG SPT Algorithm
Visit vertices in topological order. 

• When we visit a vertex: relax all of its going edges.

    distTo  edgeTo
A      0      -
B      1      A
C      ∞      -
D      1      A
E      2      D
F      ∞      -

Fringe: [A, D, B, C, E, F]

∞
B

D

C
E

FAs 6 1
1
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DAG SPT Algorithm
Visit vertices in topological order. 

• When we visit a vertex: relax all of its going edges.

    distTo  edgeTo
A      0      -
B      1      A
C      ∞      -
D      1      A
E      2      D
F      ∞      -

Fringe: [A, D, B, C, E, F]

∞
B
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C
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DAG SPT Algorithm
Visit vertices in topological order. 

• When we visit a vertex: relax all of its going edges.

    distTo  edgeTo
A      0      -
B      1      A
C      7      B
D      1      A
E      2      D
F      ∞      -

Fringe: [A, D, B, C, E, F]

∞
B

D

C
E
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DAG SPT Algorithm
Visit vertices in topological order. 

• When we visit a vertex: relax all of its going edges.

    distTo  edgeTo
A      0      -
B      1      A
C      7      B
D      1      A
E      2      D
F      ∞      -

Fringe: [A, D, B, C, E, F]

∞
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DAG SPT Algorithm
Visit vertices in topological order. 

• When we visit a vertex: relax all of its going edges.

    distTo  edgeTo
A      0      -
B      1      A
C      7      B
D      1      A
E      -13    C
F      8      C

Fringe: [A, D, B, C, E, F]

∞
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DAG SPT Algorithm
Visit vertices in topological order. 

• When we visit a vertex: relax all of its going edges.

    distTo  edgeTo
A      0      -
B      1      A
C      7      B
D      1      A
E      -13    C
F      8      C

Fringe: [A, D, B, C, E, F]

∞
B

D

C
E

FAs 6 1
1

1

1
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DAG SPT Algorithm
Visit vertices in topological order. 

• When we visit a vertex: relax all of its going edges.

    distTo  edgeTo
A      0      -
B      1      A
C      7      B
D      1      A
E      -13    C
F      -12    E 

Fringe: [A, D, B, C, E, F]

∞
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C
E
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DAG SPT Algorithm
Visit vertices in topological order. 

• When we visit a vertex: relax all of its going edges.

    distTo  edgeTo
A      0      -
B      1      A
C      7      B
D      1      A
E      -13    C
F      -12    E 

Fringe: [A, D, B, C, E, F]

∞
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C
E

FAs 6 1
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A DAG always has a guaranteed source and sink. 

The last node will always be a sink, so we’re done.



Runtime
• First: We have to find a topological order, e.g. ADBCEF. Runtime is O(V + E). 

• Second: We have to visit all the vertices in topological order, relaxing all edges as 
we go. Runtime for step 2 is also O(V + E). 

Occasional question: why isn’t it O(V*E)? We’re relaxing all edges from each vertex. 
• Keep in mind that E is the total number of edges in the entire graph, not the number 

of edges per vertex. 
Example: for the graph below, E = 8.
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DAG algos

Problem Problem Description Solution Efficiency

topological sort Find an ordering of vertices that 
respects edges of our DAG.

DFS from source nodes O(V+E) time 
Θ(V) space

DAG shortest 
paths

Find a SPT on a DAG. Negative 
weights OK.

topological sort, then visit 
vertices in that order and 
relax

O(V+E) time 
Θ(V) space



Worksheet time!
Run our algorithm to find the SPT of this DAG from s. What is distTo and edgeTo? 
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Worksheet answers
Run our algorithm to find the SPT of this DAG from s. What is distTo and edgeTo? 

B D

C E

F

A

s

4

-5

2

6

32 -20

    distTo  edgeTo
A      2      B
B      0      -
C      -3     A
D      2      B
E      -20    F
F      0      C 



Longest Paths



The Longest Paths Problem
Consider the problem of finding the longest path tree (LPT) from s to every other 
vertex. The path must be simple (no cycles!).
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The Longest Paths Problem
Consider the problem of finding the longest path tree (LPT) from s to every other 
vertex. The path must be simple (no cycles!).
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Some surprising facts: 

• Best known algorithm is 
exponential (extremely 
bad). 

• Perhaps the most 
important unsolved 
problem in mathematics.



The Longest Paths Problem on DAGs
Difficult challenge for you: 

• Solve the LPT problem on a directed acyclic graph. 

• Algorithm must be O(E + V) runtime.
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Hint: How can we make this problem look like the problem we just solved? 

(Worksheet time!)



The Longest Paths Problem on DAGs
DAG LPT solution for graph G: 

• Form a new copy of the graph G’ with signs of all edge weights flipped. 

• Run DAGSPT on G’ yielding result X. 

• Flip signs of all values in X.distTo. X.edgeTo is already correct. 
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(Worksheet answers)



The Longest Paths Problem on DAGs
DAG LPT solution for graph G: 

• Form a new copy of the graph G’ with signs of all edge weights flipped. 

• Run DAGSPT on G’ yielding result X. 

• Flip signs of all values in X.distTo. X.edgeTo is already correct. 
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DAG algos
Problem Problem Description Solution Efficiency

topological sort Find an ordering of vertices that 
respects edges of our DAG.

DFS from source nodes O(V+E) time 
Θ(V) space

DAG shortest 
paths

Find a SPT on a DAG. Negative 
weights OK.

topological sort, then visit 
vertices in that order and 
relax

O(V+E) time 
Θ(V) space

longest paths Find a longest paths tree on a 
graph.

No good known solution 
exists.

?

DAG longest 
paths

Find a longest paths tree on a 
DAG.

flip signs, then DAG 
shortest paths, flip signs 
again

O(V+E) time 
Θ(V) space

Why? It’s just 
DAG shortest paths. 
Which is just topological sort. 
Which is just DFS. 



DAGs in my research



Automated Accessory Rigs 
for Layered 2D Character 
Illustrations

Jingyi Li • Wilmot Li • Sean Follmer • Maneesh Agrawala







source: Bitmoji

Mix & match  
character creation





Characters are static









How can we automatically attach 
accessories to the body such that they 

deform with the body?



How can we automatically attach 
accessories to the body such that they 

deform with the body?

Construct & infer four types of constraints 
between layers for automated rigs: (1) occlusion, 

(2) at a single point, (3) along coincident 
boundaries, and (4) around a region of overlap.



Input

Bottom layer

Top layer Bowtie

Front sleeve

Shirt collar

Vest

Shirt bodice

Back sleeveBody layers Accessory layers



Parent

Child

DAG



Body layers

!"#$

%&'(&

)"*(

+'&,%#'- .#/0#'-

!"#$
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)"*(

+'&,%#'- .#/0#'-

root

DAG



For each accessory,

Target accessory 
(shoe)

check overlap with 
every other layer

…

…

If just one overlap, 
make an edge

!"#$

!"%&$'("



For each accessory,

Target accessory 
(vest)

multiple overlaps with

(buttons)

Within 15% of maximum 
overlapping area

layer order 
… 
9. button 
8. vest 
7. shirt bodice  
6. shirt backsleeve 
5. body torso 
4. legs 
…



Body layer

Accessory layer

Body-body attachment

DAG



Constraint types

Occlusion

Single point

Boundary

Region

Body layer

Accessory layer

Body-body attachment

Constraints



Constraint types

Occlusion

Single point

Boundary

Region

Constraint 1: Occlusion

Body layer

Accessory layer

Body-body attachment



Constraint types

Occlusion

Single point

Boundary

Region

Constraint 2: Single point



Constraint types

Occlusion

Single point

Boundary

Region

Constraint 3: Boundary



Constraint types

Occlusion

Single point

Boundary

Region

Constraint 4: Overlapping region



For each DAG edge,
Constraint inference

Body-accessory:
• try occlusion

Accessory-accessory:
• try boundary & overlap

No resultant points: attach at a single point



Results













Lecture 23 wrap-up
• HW10: On The Road due Tues 11:59pm  

• Checkpoint 3 in two weeks (12/3). This is the last lecture on the checkpoint (but my 
rigging research project you saw is not on the checkpoint :))

Resources
• HW10: On The Road due Tues 11:59pm  

• Checkpoint 3 in two weeks (12/3). This is the last lecture on the checkpoint. 

• Textbook on DAGs (3.3.2): http://algorithmics.lsi.upc.edu/docs/Dasgupta-
Papadimitriou-Vazirani.pdf   

• Practice problems (conceptual, no solutions) behind this slide 

http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf


Longest Path conceptual problems
• Find an example where the obvious algorithm (Dijkstra’s but pick the biggest edge first) 

fails. 

• Is the longest path to every other vertex always a tree (i.e. does an LPT exist for all 
graphs)? 

• Why is the longest path problem (general, not just DAGs) hard? Try to develop an intuition 
for exactly how.  

• (Search the internet for any of these answers if you’re having trouble thinking about it.)


