CS62 Class 23: Directed Acyclic Graphs

Agenda

» Directed acyclic graphs
» Topological sorts

» Shortest paths on DAGs
» Longest paths

» DAGSs in the wild (a research project example)

Reminder: graph algos so far

Problem

paths

shortest paths

shortest
weighted paths

minimum
spanning tree

minimum
spanning tree

Problem Description

Find a path from s to every
reachable vertex.

Find the shortest path from s
to every reachable vertex.

Find the shortest path,
considering weights, from s to
every reachable vertex.

Find the minimum spanning
tree.

Find the minimum spanning
tree.

Solution
DFS

BFS

Dijkstra’s

Prim’s

Kruskal’s

Efficiency
O(V+E) time
O(V) space
O(V+E) time
O(V) space

O(E log V) time
O(V) space

O(E log V) time
O(V) space

O(E log E) time
O(E) space

Directed Acyclic Graphs

How to determine if a graph has cycles?

» Given a undirected graph, determine if it contains any cycles. What is its runtime?

» May use any data structure or algorithm from the course so far.

How to determine if a graph has cycles?

» Given a undirected graph, determine if it contains any cycles. What is its runtime?

» May use any data structure or algorithm from the course so far.

* One possible approach: Do DFS from A (arbitrary vertex).

» Keep going until you see a marked vertex.

\ /

+ Solution: Just don't count the node you came from.

 Potential danger:

> B looks back at A and sees marked.

* Worst case runtime: O(V + E).

» With some cleverness, can give a tighter bound of O(V) (the number of edges we
check is at most 'V, so O(V+E) = O(V))

Directed acyclic graph
Q: This DAG has...
(&) ~(®)
A * how many sources?
* how many sinks?
* how many possible linearizations?
@ >@ @ hint: 1 valid one is B,A,D,C,E,F

* Property: A directed graph has a cycle if and only if its depth-first search reveals a
back edge.

+ A graph without cycles is acyclic.

» DAGs are good for modeling dependencies: before you do C, you have to do A; before
you do A, you have to do B.

+ Alinearization or a topological sort of a DAG is an ordering of its vertices so that for
every directed edge from vertex u to vertex v, u comes before v in the ordering.

Directed acyclic graph
Q: This DAG has...
@ @ * how many sources? 1 (A)

* how many sinks? 2 (E, F)

* how many possible linearizations?
@ >@ @ hint: 1 valid one is B,A,D,C,E,F

4. other 3: BA,D,C,F,E; B,D,A,C,FE: B,D,A,CE,F

* Property: A directed graph has a cycle if and only if its depth-first search reveals a
back edge.

+ A graph without cycles is acyclic.

» DAGs are good for modeling dependencies: before you do C, you have to do A; before
you do A, you have to do B.

+ Alinearization or a topological sort of a DAG is an ordering of its vertices so that for
every directed edge from vertex u to vertex v, u comes before v in the ordering.

Topological sorts

Topological Sort
[
0

Suppose we have tasks A through H, where an arrow from v to u indicates that v
must happen before u.

» What algorithm do we use to find a valid ordering for these tasks?
 Valid orderings include: [A, C, B, D, F, E, H, G], [C,A, D, F, B, E, G, H], ..

Solution
N AN

Perform a DFS traversal from every source vertex. Do NOT clear markings in
between traversals.

» Record DFS postorder (left, right, root) in a list.
» Topological ordering is given by the reverse of that list (reverse postorder).

Topological Sort (Demo 1/2)

Postorder: |] Postorder: |] Postorder: |] Postorder: [H]
Call stack: A Call stack: A—B Call stack: A=B—E Call stack: AB—E—H

Postorder: [H, E] Postorder: [H, E, B] Postorder: [H, E, B] Postorder: [H, E, B, D]
Call stack: A»B—E Call stack: A—B Call stack: A Call stack: A—D

Topological Sort (Demo 2/2)

Postorder: [H, E, B, D] Postorder: [H, E, B, D, A] Postorder: [H, E, B, D, A] Postorder: [H, E, B, D, Al
Call stack: A—D Call stack: A Call stack: C Call stack: C—F

Postorder: [H, E, B, D, A, G] Postorder: [H, E, B, D, A, G, F] Postorder: [H, E, B, D, A, G, F, C]
Call stack: C»F—G Call stack: C—F Call stack: C

Solution
N AN

Perform a DFS traversal from every vertex with indegree 0, NOT clearing markings
in between traversals.

» Record DFS postorderin alist:[H, E, B, D, A, G, F, C]
» Topological ordering is given by the reverse of that list (reverse postorder):
‘ [CI FI GI AI DI BI EI H]

Topological Sort

-— [F]
E\/ \ F6 B——F_

+ Topological ordering: [C, F, G, A, D, B, E, H]
* When nodes are topologically sorted in a diagram, arrows all point rightwards.

- Be aware, that when people say "Depth First Search”, they sometimes mean with
restarts, and they sometimes mean without.

» For example, when we did DFS for reachability, we did not restart.

» For Topological Sort, we restarted from every vertex with indegree 0 (source).

Worksheet time!

Give a topological ordering for the DAG below (a.k.a. topological sort). When you
can choose from multiple vertices, take the one with lower edge weight.

m |
2
s e

Worksheet answer

Give a topological ordering for the DAG below (a.k.a. topological sort)

» A D, B, C E, F(because DFS postorder was FECBDA)

R
mK |

2

Topological sorts can only work on DAGs

A topological sort only exists if the graph is a directed acyclic graph (DAG).

» For the graph below, there is NO possible ordering where all arrows are respected.

DAGs appear in many real world applications (causalities, hierarchies, temporal dependencies),
and there are many graph algorithms that only work on DAGs.

Graph algos so far

Problem Problem Description Solution Efficiency
paths Find a path from s to every DFS O(V+E) time
reachable vertex. O(V) space
shortest paths | Find the shortest path from sto |BFS O(V+E) time
every reachable vertex. O(V) space
shortest Find the shortest path, Dijkstra’s O(E log V) time
weighted paths |considering weights, from s to O(V) space
every reachable vertex.
minimum Find the minimum spanning tree. Prim’s O(E log V) time
spanning tree O(V) space
minimum Find the minimum spanning tree. |Kruskal's O(E log E) time
spanning tree O(E) space
topological sort Find an ordering of vertices that |DFS from source nodes O(V+E) time
respects edges of our DAG. O(V) space

Why? It's just DFS.

Shortest Paths on DAGs

Shortest Paths Warmup

What is the shortest paths tree for the graph below, using s as the source?
In what order will Dijkstra’s algorithm visit the vertices?

' 1

\ﬁ s— |

Shortest Paths Warmup

What is the shortest paths tree for the graph below, using s as the source?
In what order will Dijkstra’s algorithm visit the vertices?

- AB,D EFC

|
I L

Shortest Paths with negative edges

It we allow negative edges, Dijkstra’s algorithm can fail.

+ For example, below we see Dijkstra’s just before vertex C is visited.

16_1

S
25 20
-< | AE

]]

—ep”

Shortest Paths with negative edges

If we allow negative edges, Dijkstra’s algorithm can fail.
+ For example, below we see Dijkstra’s just before vertex C is visited.

« Relaxation on E succeeds, but distance to F (how should be -10) will never be

updated.
6 — distTo is wrong!
T | 1
° 25 20

—
P

1 | 1

o — 11—

P-N

But, shortest paths on DAGs with negative weights will
work

Try to come up with an algorithm for shortest paths on a DAG that works even if there
are negative edges.

» Hint: You should still use the “relax” operation as a basic building block.
S
E

\ 1

But, shortest paths on DAGs with negative weights will
work

Try to come up with an algorithm for shortest paths on a DAG that works even if there
are negative edges.

» Hint: You should still use the “relax” operation as a basic building block.

/ 1
s \
e
\ 1
One simple idea: Visit vertices in topological order.

* On each visit, relax all outgoing edges.

* Each vertex is visited only when all possible info about it has been used!

The DAG SPT Algorithm: Relax in Topological Order

First: We have to find a topological order, e.g. ADBCEF. Runtime is O(V + E).

The topological order is just the

6 — order of the fringe priority queue!
1 1

The DAG SPT Algorithm: Relax in Topological Order

Second: We have to visit all the vertices in topological order, relaxing all edges as we
go. Let's see a demo.

e A M R RS

H M OQo»

DAG SPT Algorithm

Visit vertices in topological order.

» When we visit a vertex: relax all of its going edges.

distTo edgeTo
0 —

- o — ————=El_
: s-% —6—[cF—————(F]

]

8 8 8 8 8

Fringe: [A, D, B, C, E, F]

H M OQo»

DAG SPT Algorithm

Visit vertices in topological order.

- When we visit a vertex: relax all of its going edges.

distTo
0

8 8 8 8 8

edgeTo

LY —

Fringe:

[

|:|___1

b, B, C, E, F]

6.

T

]

H M OQo»

DAG SPT Algorithm

Visit vertices in topological order.

» When we visit a vertex: relax all of its going edges.

e

distTo edgeTo

Fringe: | D, B, C, E, F]

H M OQo»

DAG SPT Algorithm

Visit vertices in topological order.

» When we visit a vertex: relax all of its going edges.

e

distTo edgeTo

Fringe: | B, C, E, F]

A EE———
_ - -20
Ry i B Tt B

H M OQo»

DAG SPT Algorithm

Visit vertices in topological order.

» When we visit a vertex: relax all of its going edges.

e

distTo edgeTo

Fringe: | B, C, E, F]

H M OQo»

DAG SPT Algorithm

Visit vertices in topological order.

» When we visit a vertex: relax all of its going edges.

. 1
dlngo ed?eTo Y
1 A 0 1
o _ 1= 25 _ -20
- 26 o —feh
2 D 1 ™, 00

Fringe: | C, E, F]

H M OQo»

DAG SPT Algorithm

Visit vertices in topological order.

» When we visit a vertex: relax all of its going edges.

e

distTo edgeTo

Fringe: | C, E, F]

H M OQo»

DAG SPT Algorithm

Visit vertices in topological order.

» When we visit a vertex: relax all of its going edges.

1

P S E—
SI— 6 —{ct

7

distTo edgeTo

8 N R J B~ O
] O » o P

Fringe: | E, F]

— 20 "

]

1\‘
>

0

H M OQo»

%H\,Ho

DAG SPT Algorithm

Visit vertices in topological order.

» When we visit a vertex: relax all of its going edges.

e

distTo edgeTo

H M OQo»

QQp Wy
%
T

DAG SPT Algorithm

Visit vertices in topological order.

» When we visit a vertex: relax all of its going edges.

distTo
0
1
7
1
-13
8

edgeTo

Fringe:

e

F]

H M OQo»

DAG SPT Algorithm

Visit vertices in topological order.

» When we visit a vertex: relax all of its going edges.

e

distTo edgeTo

Fringe: | F]

H M OQo»

DAG SPT Algorithm

Visit vertices in topological order.

» When we visit a vertex: relax all of its going edges. 13

distTo edgeTo 1 2“’: -12
0 - AN
L a0 &—1 ——). =
7 B =B Kl e ——
e S-— 6 —[cF 20— =7
~-13 C [
-12 E

A DAG always has a guaranteed source and sink.

The last node will always be a sink, so we're done.

Fringe: |]

Runtime

* First: We have to find a topological order, e.g. ADBCEF. Runtime is O(V + E).

* Second: We have to visit all the vertices in topological order, relaxing all edges as
we g0. Runtime for step 2 is also O(V + E).

Occasional question: why isn't it O(V*E)? We're relaxing all edges from each vertex.

Keep in mind that E is the total number of edges in the entire graph, not the number

of edges per vertex.
Example: for the graph below, E = 8.

o,y (]
(Ao {2 T

DAG algos

Problem Problem Description Solution Efficiency
topological sort |Find an ordering of vertices that ' DFS from source nodes O(V+E) time
respects edges of our DAG. O(V) space
DAG shortest Find a SPT on a DAG. Negative topological sort, then visit O(V+E) time
paths weights OK. vertices in that order and O(V) space

relax

Worksheet time!

Run our algorithm to find the SPT of this DAG from s. What is distTo and edgeTo?

A | ‘

Worksheet answers

Run our algorithm to find the SPT of this DAG from s. What is distTo and edgeTo?

6 » distTo edgeTo
A 2 B
| T
D 2 B
E -20 F
F C

;

Longest Paths

The Longest Paths Problem

Consider the problem of finding the longest path tree (LPT) from s to every other
vertex. The path must be simple (no cycles!).

The Longest Paths Problem

Consider the problem of finding the longest path tree (LPT) from s to every other

vertex. The path must be simple (no cycles!). III
Some surprising facts: 17 7
* Best known algorithm is
exponential (extremel
baE:)I). | ! ,5 A
* Perhaps the most) 1 , \ /
\

important unsolved ~

4]
problem in mathematics. 15 //

The Longest Paths Problem on DAGs

Difficult challenge for you: (Worksheet time)

» Solve the LPT problem on a directed acyclic graph.

» Algorithm must be O(E + V) runtime.

lint: How can we make this problem look like the problem we just solved?

The Longest Paths Problem on DAGs

(Worksheet answers)

DAG LPT solution for graph G:
» Form a new copy of the graph G’ with signs of all edge weights flipped.
» Run DAGSPT on G'yielding result X.

» Flip signs of all values in X.distTo. X.edgeTo is already correct.

The Longest Paths Problem on DAGs

DAG LPT solution for graph G:
» Form a new copy of the graph G' with signs of all edge weights flipped.
» Run DAGSPT on G’ yielding result X.

» Flip signs of all values in X.distTo. X.edgeTo is already correct.

DAG algos

Problem

topological sort

DAG shortest
paths

longest paths

DAG longest
paths

Problem Description

Find an ordering of vertices that

respects edges of our DAG.

Find a SPT on a DAG. Negative
weights OK.

Find a longest paths tree on a
graph.

-ind a longest paths tree on a

DAG.

Solution

DFS from source nodes

topological sort, then visit
vertices in that order and
relax

No good known solution
exists.

flip signs, then DAG
shortest paths, flip signs
again

Efficiency

O(V+E) time
O(V) space

O(V+E) time
O(V) space

?

O(V+E) time
O(V) space

Why? It's just
DAG shortest paths.

Which is j

Which is |

ust topological sort.
ust DFS.

DAGs in my research

Automated Accessory Rigs
for Layered 2D Character
Illustrations “

L™ S) |
4752 NN 22 \
, g’h’ ';_-R Ve? F;F NN 1 i)
s AV S . /4'@ AN \ — 3 | 1 '
“ al/ § ?);v‘-:}\ /A) '2 ’. \ ’l \ ‘ !
(21 = w\Bl | ([N \
H=lls 2 Z\af ' " ‘ ;
: — | ¥ g h i ls | I
Wiy & Tﬁ i I ‘ '\ /'
=9 Adobe \ /g \z2=//Ey
-.\‘ .y* S < ¥”_ .'.l o ‘ .
“‘ 1891 ". .

Jingyi Li * Wilmot Li - Sean Follmer - Maneesh Agrawala

T~y ‘ '
source: Disney

Mix & match
character creation

source: Bitmoji

Home / Collections / Open Peeps /

Standing v by Pablo Stanley

Skin
Standing B X SeeAll
< —g
5 4
Head @ X SeeAll

~ F a

Facial Hair B X SeeAll

o] (o

Characters are static

oA

Doc: 1 54AM/KRR M

Q Kind v E]

Normal v Opacity: 100%

Lock: B / ¢ ™ B Fill: 100%

o

e

e

¢

[gaases|
|

e

leather-jacket-frontarm
blue-shirt-frontarm
polo-shirt-frontarm
frontarm-base
leather-jacket-back
leather-jacket-front
blue-shirt-base
tank-shirt-base
polo-shirt-feature
polo-shirt-base
leather-jacket-backarm
blue-shirt-backarm

W
3 polo-shirt-backarm

backarm-base

leg-shorts

4

v

How can we automatically attach
accessories to the body such that they
deform with the body?

How can we automatically attach
accessories to the body such that they
deform with the body?

Construct & infer four types of constraints
between layers for automated rigs: (1) occlusion,
(2) at a single point, (3) along coincident
boundaries, and (4) around a region of overlap.

Top layer Bowtie

Front sleeve

Shirt collar

b=,
&

Shirt bodice

Back sleeve

Body layers Accessory layers Bottom layer \

QQQQ

i

parent frontarm @ @
J 8

Child @tsleeve , backsle@
bodice

o e

DAG
)))

@tsh@ rightsh@ @
B () Gread)

frontsleeve . ‘ backsleeve

bodice

@ vest

Body layers

For each accessory, check overlap with If just one overlap,
every other layer make an edge

Target accessory -t
(shoe)

(&

For each accessory, multiple overlaps with

Within 15% of maximum
overlapping area

layer order

9. button

3. vest

/. shirt bodice \/
6. shirt backsleeve
5. body torso

4. legs

Target accessory
(vest)

(buttons)

@D .
backarm
- B Body layer
frontsle@ @ksleE e
bodice | B Accessory layer
) Body-body attachment
w Cvest) o

Constraints

@nta 'm

v

@tsleeve

@ backarm
backsleeve

@ vest

=

Occlusion
Single point
Boundary

Region

Body layer
Accessory layer

Body-body attachment

Constraint 1: Occlusion

Constraint types

@ @ B Occlusion

Single point

@ Boundary
@ @ . parent layer
frontarm @ boundary

| R’

Constraint 2: Single point

Constraint types
- B Single point
attachment .
point ‘\5)’1

WM

<o

\\—o

Constraint 3: Boundary

e

e

5 - “»
coincident —

boundary \ ‘
0
AN

Constraint types

Boundary

Constraint 4: Overlapping region

Constraint types

B Region

region of

@tsleeve , backsle@ overlap
bodice

Constraint inference
For each DAG edge,

Body-accessory: Accessory-accessory:
» try occlusion » try boundary & overlap

@nta@ frontsleeve ,
bodice
v
@ collar)

No resultant points: attach at a single point

vod

Results

Lecture 23 wrap-up

* HW10: On The Road due Tues 11:59pm

* Checkpoint 3 in two weeks (12/3). This is the last lecture on the checkpoint (but my
rigging research project you saw is not on the checkpoint :))

Resources
* HW10: On The Road due Tues 11:59pm

* Checkpoint 3 in two weeks (12/3). This is the last lecture on the checkpoint.

» Textbook on DAGSs (3.3.2):

* Practice problems (conceptual, no solutions) behind this slide

http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

Longest Path conceptual problems

- Find an example where the obvious algorithm (Dijkstra’s but pick the biggest edge first)
fails.

* |s the longest path to every other vertex always a tree (i.e. does an LPT exist for all
graphs)?

» Why is the longest path problem (general, not just DAGSs) hard? Try to develop an intuition
for exactly how.

* (Search the internet for any of these answers if you're having trouble thinking about it.)

