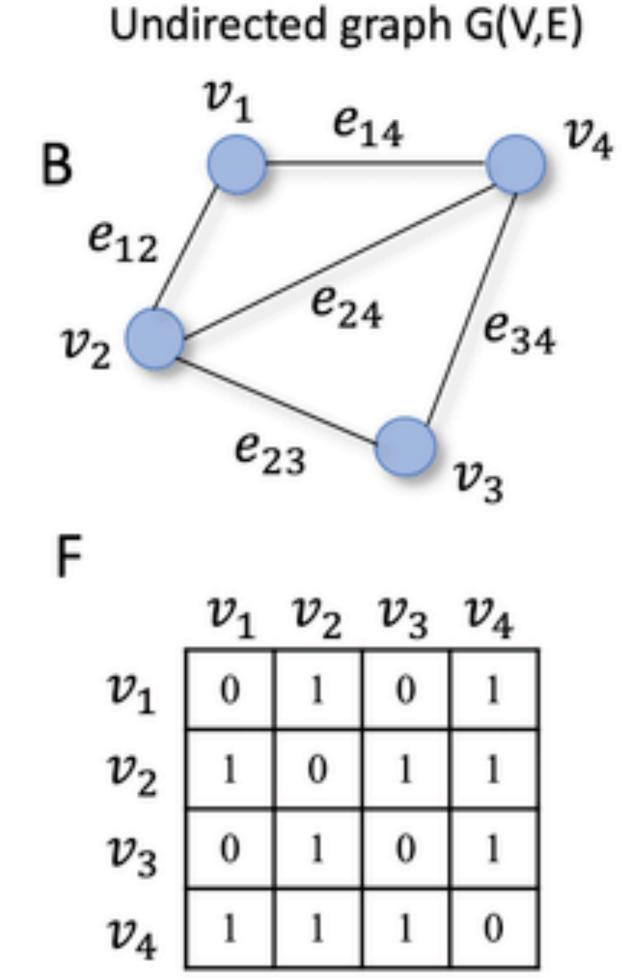
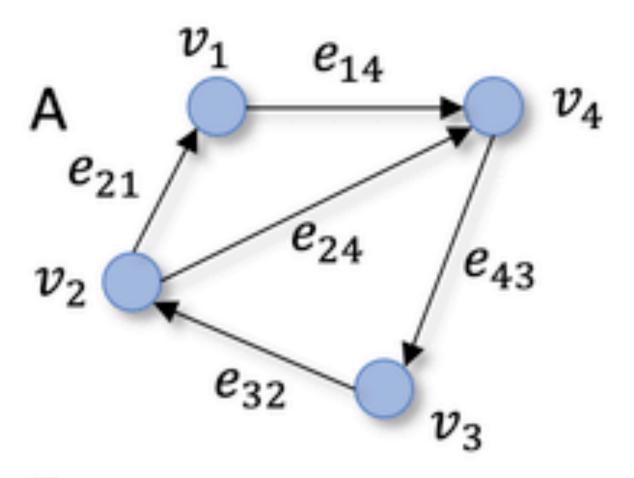
CS62 Class 22: Graphs (intro, BFS/DFS)



adjacency matrix

Graphs

Directed graph G(V,E)



Ε

	v_1	v_2	v_3	v_4
v_1	0	0	0	1
v_2	1	0	0	1
v_3	0	1	0	0
v_4	0	0	1	0

Agenda

- Undirected graphs
 - Depth-first search
 - Breadth-first search
- Directed graphs
 - Depth-first search
 - Breadth-first search

Why study graphs?

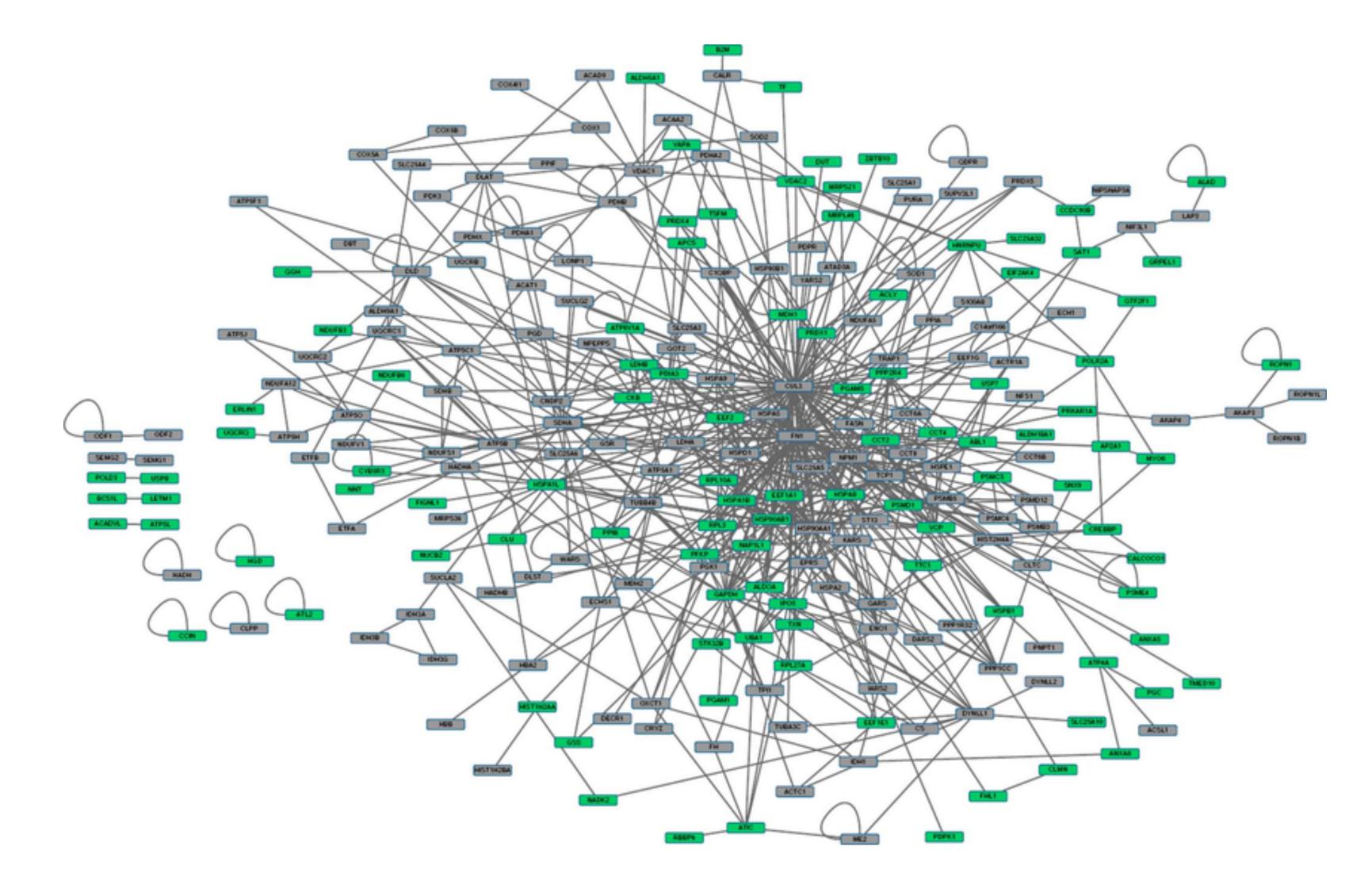
- Thousands of practical applications.
- Hundreds of graph algorithms known.
- Interesting and broadly useful abstraction. •
- Challenging branch of theoretical computer science.

Undirected graphs

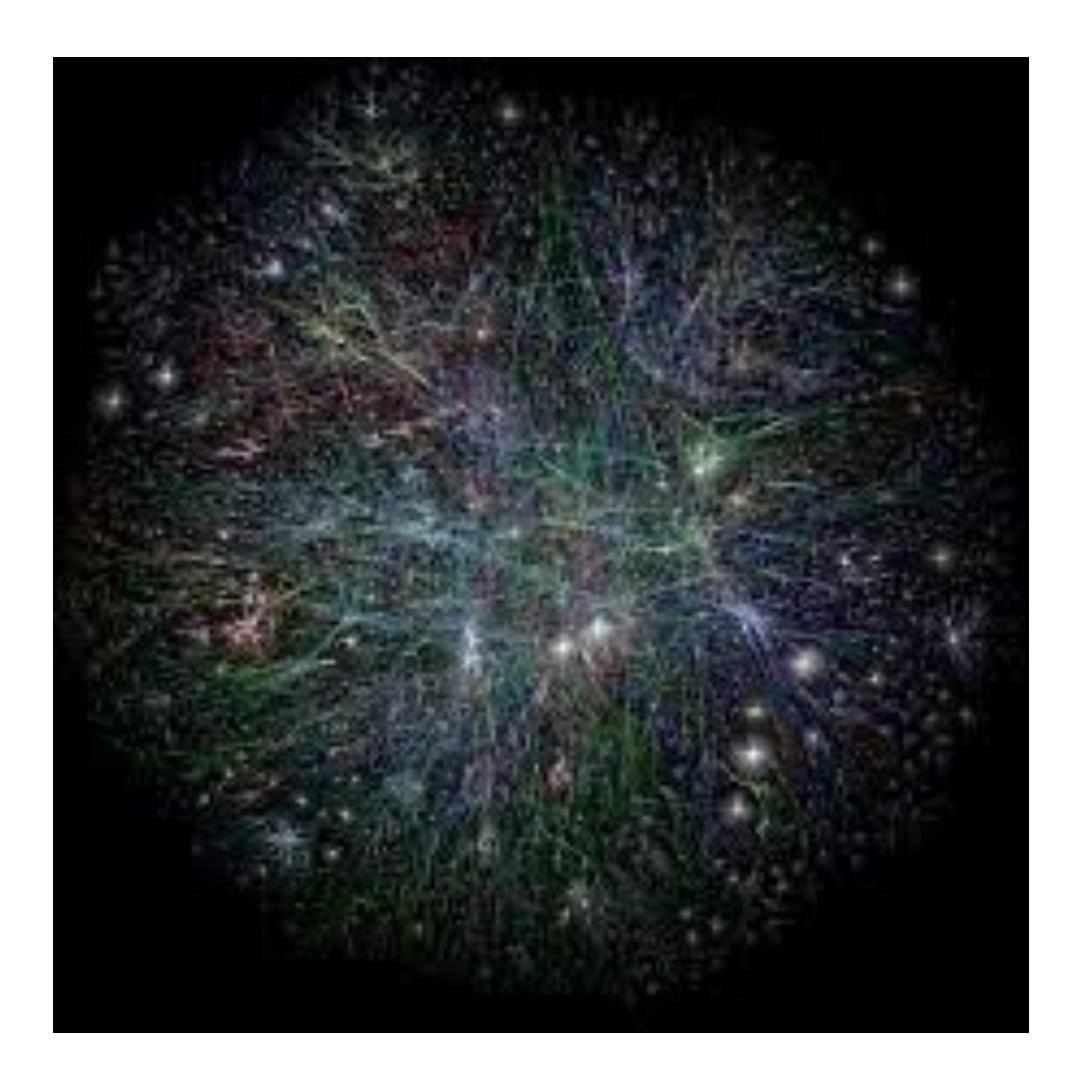
Undirected Graphs

- Graph: A set of *vertices* connected pairwise by *edges*.
- Undirected graph: The edges do not point in a specific direction

Protein-protein interaction graph

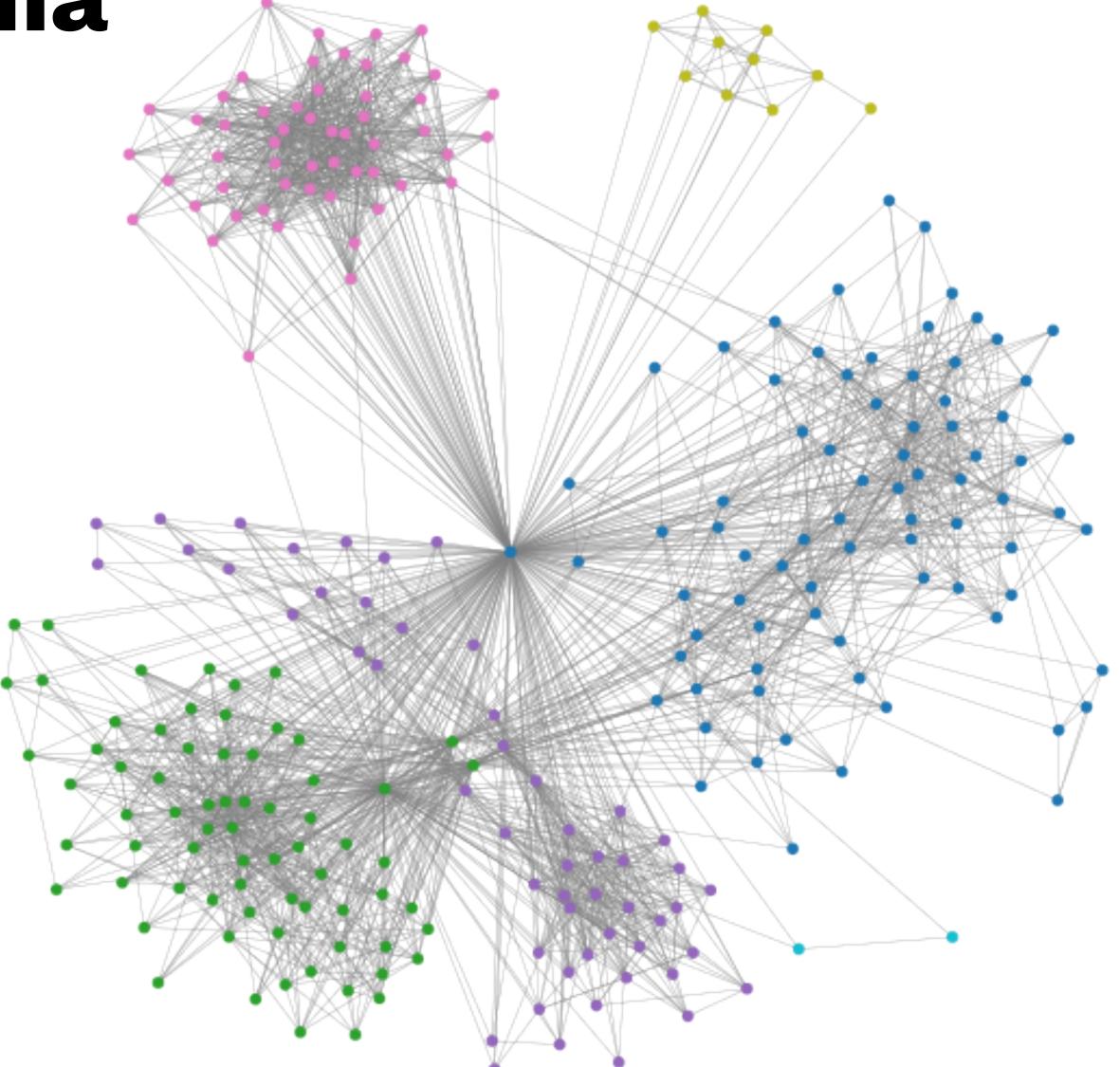


The Internet



https://www.opte.org/the-internet

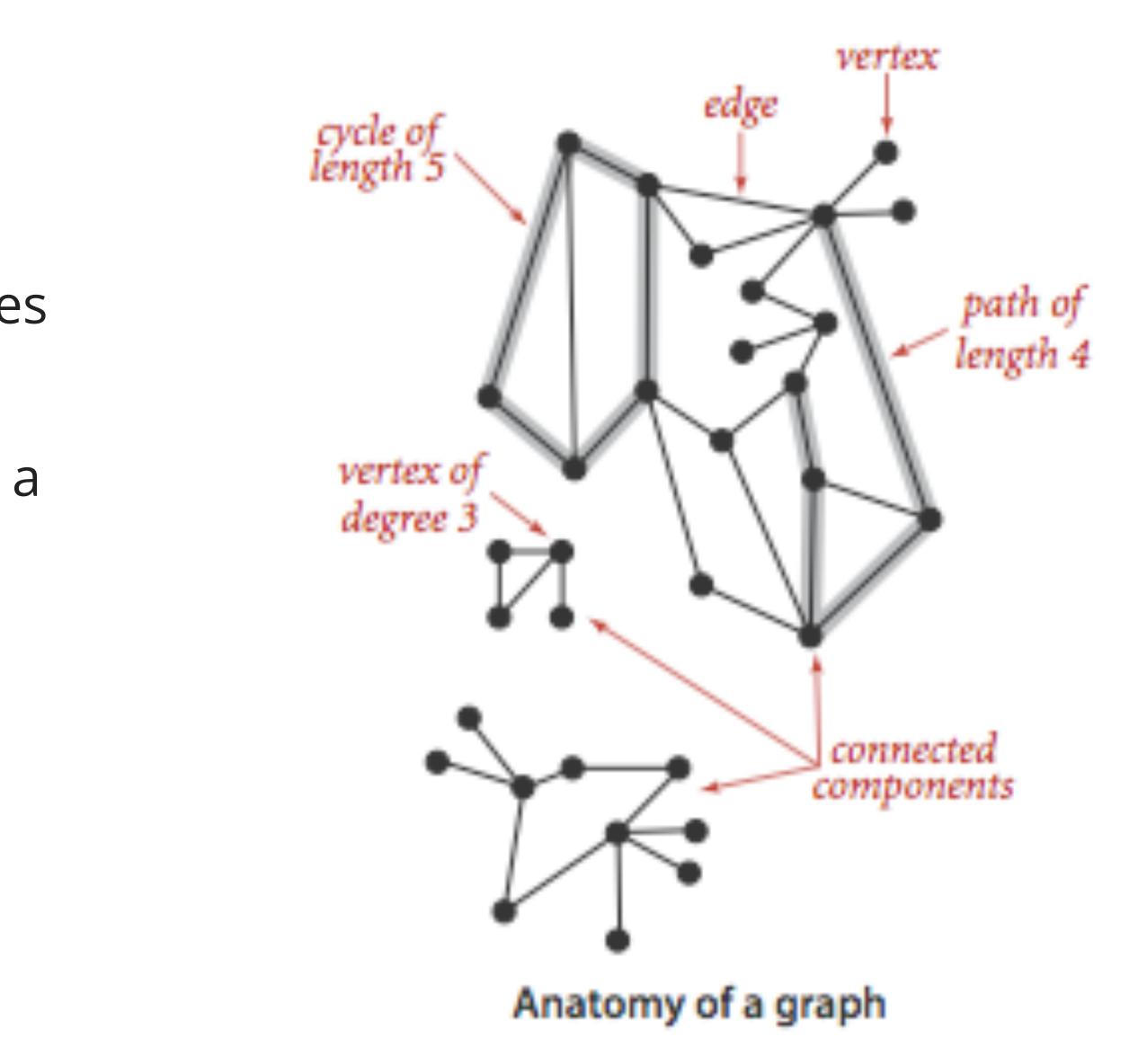
Social media



https://www.databentobox.com/2019/07/28/facebook-friend-graph/

Graph terminology

- Path: Sequence of vertices connected by edges
- Cycle: Path whose first and last vertices are the same
- Two vertices are connected if there is a path between them



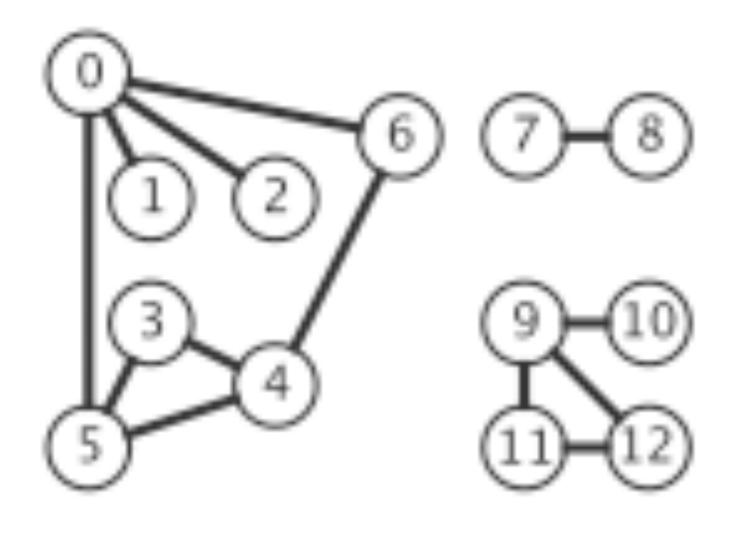
Examples of graph-processing problems

- Is there a path between vertex s and t?
 - What is the shortest path between s and t?
- Is there a cycle in the graph?
 - Euler Tour: Is there a cycle that uses each edge exactly once?
 - Hamilton Tour: Is there a cycle that uses each vertex exactly once?
- Is there a way to connect all vertices?
 - What is the shortest way to connect all vertices?
- Is there a vertex whose removal disconnects the graph?

Graph representation

 Vertex representation: integers betwee type, e.g., custom Nodes).

0 5 means there's anedge between vertices0 and 5



• Vertex representation: integers between 0 and V-1 (but can be generalized to any

Basic Graph API

public class Graph

- Graph(int V): create an empty graph with V vertices.
- void addEdge(int v, int w): add an edge v-w.
- Iterable<Integer> adj(int v): return vertices adjacent to v.
- int V(): number of vertices.
- int E(): number of edges.

Example of how to use the Graph API to process the graph

The degree of a vertex v is the number of vertices connected to v (i.e., the number of edges.)

public static int degree(Graph g, int v){ int count = 0;for(int w : g.adj(v)) count++; return count;

Graph density

- In a simple graph (no parallel edges or loops), if |V| = n, then: minimum number of edges is 0 and •

 - maximum number of edges is n(n-1)/2. O(n^2) - all vertices are connected to each other •
- Dense graph -> edges closer to maximum.
- Sparse graph -> edges closer to minimum.

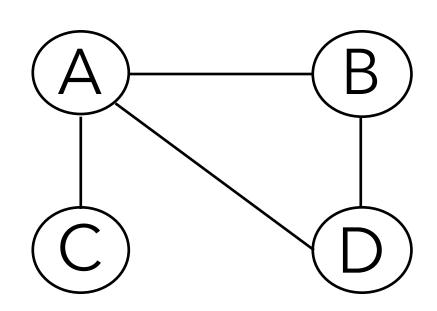
|V| = number of vertices

Graph representation: adjacency matrix

- Maintain a |V|-by-|V| boolean array; for each edge v-w:
 - adj[v][w] = adj[w][v] = true;
- Good for dense graphs (edges close to $|V|^2$).
- Constant time for lookup of an edge.
- Constant time for adding an edge.
- |V| time for iterating over vertices adjacent to v.
- Symmetric, therefore wastes space in undirected graphs ($|V|^2$).
- Not widely used in practice.

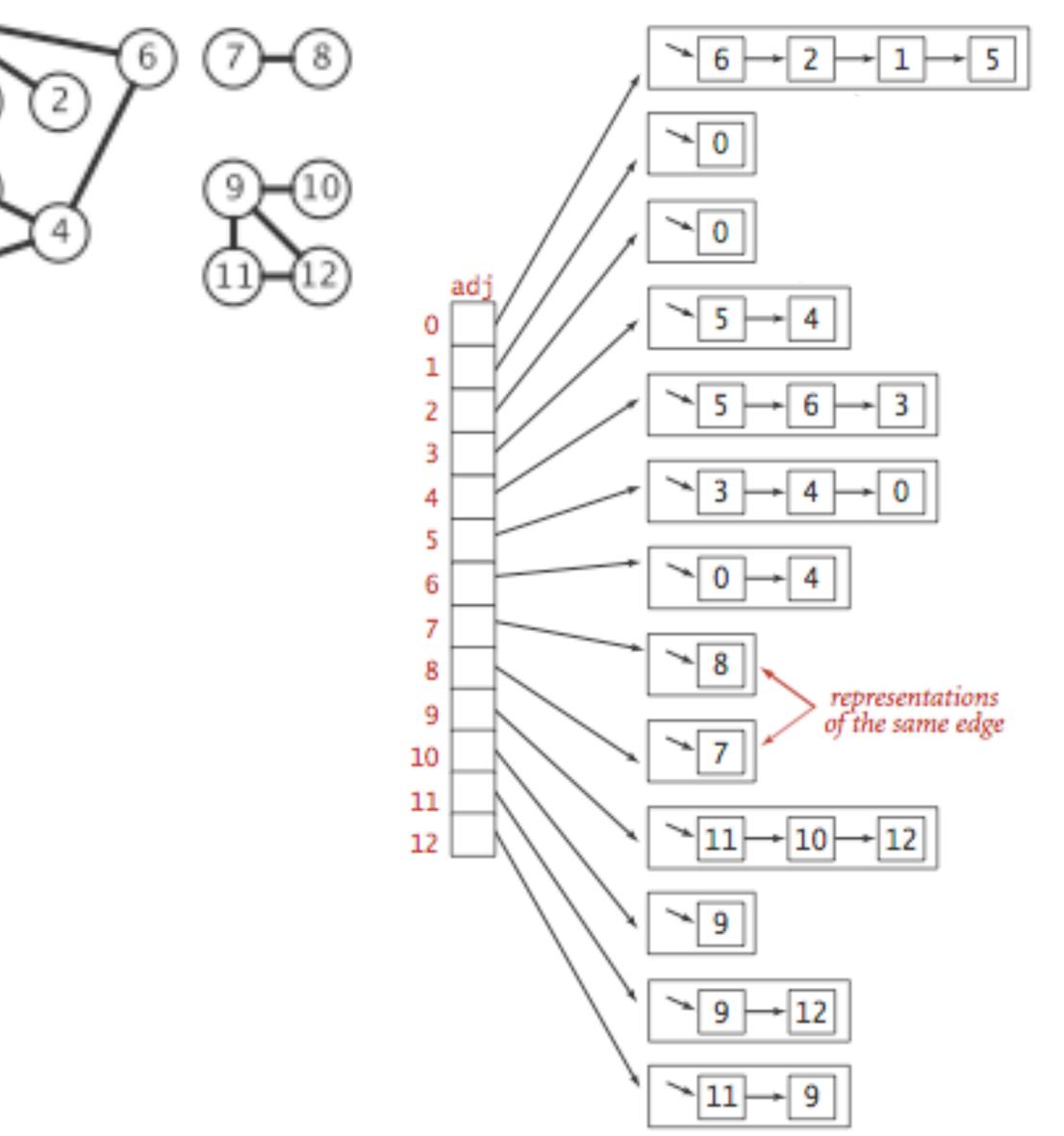
For undirected graphs, adjacency matrices are always symmetric along the diagonal

	Α	В	С	D
Α	0	1	1	1
В	1	0	0	1
С	1	0	0	0
D	1	1	0	0



Graph representation: adjacency list

- Maintain vertex-indexed array of lists. The list stores vertices adjacent to v.
- Good for sparse graphs (edges proportional to |V|) which are much more common in the real world.
- Space efficient (|E| + |V|).
- Constant time for adding an edge.
- Lookup of an edge or iterating over vertices adjacent to v is degree(v).



Adjacency-list graph representation in Java

```
public class Graph {
 9
10
       private final int V; // number of vertices
       private int E; // number of edges
11
12
       private final List<Integer>[] adj; // adjacency lists
13
       //init empty graph with V vertices and 0 edges
14
15
       @SuppressWarnings("unchecked")
        public Graph(int V) {
16
           this.V = V;
17
           this.E = 0;
18
           adj = (List<Integer>[]) new List[V];
19
           for (int v = 0; v < V; v++) {
20
                                                24
               adj[v] = new ArrayList<>();
21
22
                                                25
23
                                                26
```

- 27 28
- 29 30 31

32

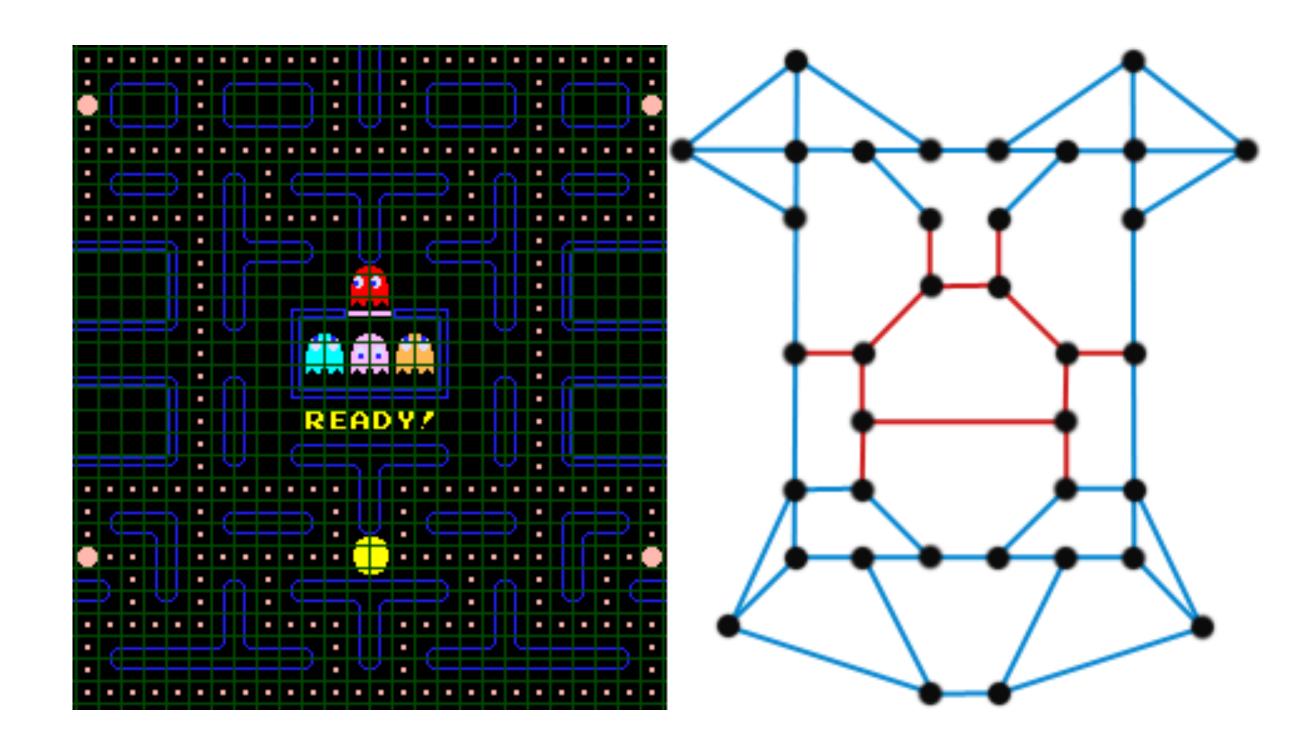
33

```
//adds undirected edge v-w to graph. parallel edges and
self-loops allowed
public void addEdge(int v, int w) {
    E++;
    adj[v].add(w);
    adj[w].add(v);
//returns vertices adjacent to vertex v
public Iterable<Integer> adj(int v) {
    return adj[v];
}
```


Depth-first search

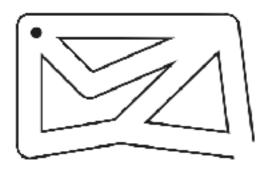
Mazes as graphs

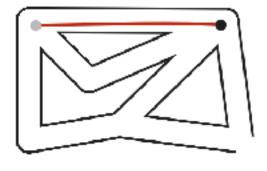
• Vertex = intersection; edge = passage

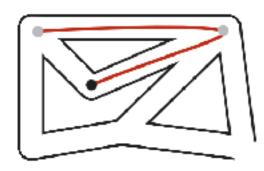


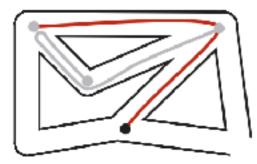
How to survive a maze: a lesson from a Greek myth

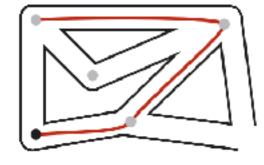
- Theseus escaped from the labyrinth after killing the Minotaur with the following strategy instructed by Ariadne:
 - Unroll a ball of string behind you.
 - Mark each newly discovered intersection and passage.
 - Retrace steps when no unmarked options.
- Also known as the Trémaux algorithm.

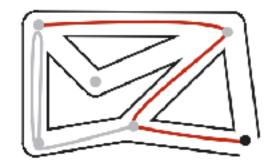












Depth-first search

- your steps.
- Goal: Systematically traverse a graph. •
- DFS (to visit a vertex v)
 - Mark vertex v.
 - Recursively visit all unmarked vertices w adjacent to v.

- Typical applications:
 - Find all vertices connected to a given vertex. •
 - Find a path between two vertices.

Basic idea: Go deep in a graph until you can't anymore, visiting all vertices. Then retrace

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

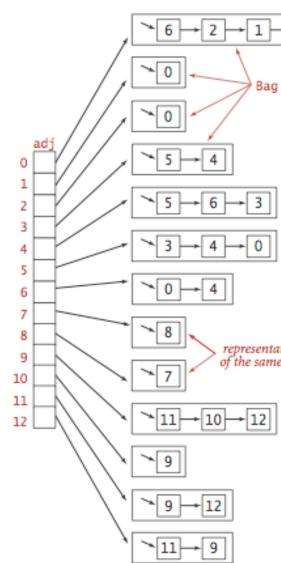
Algorithms

♣

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

4.1 DEPTH-FIRST SEARCH DEMO



Order visited: 0, 6, 4, 5, 3, 2, 1

1	+ 5
Bag	objects

3	
_	1
0	

representations of the same edge

Depth-first search

- Goal: Find all vertices connected to s (and a corresponding path). •
- Idea: Mimic maze exploration.
- Algorithm:
 - Use recursion (ball of string). •
 - Mark each visited vertex (and keep track of edge taken to visit it).
 - Return (retrace steps) when no unvisited options. •
- When started at vertex s, DFS marks all vertices connected to s (and no other).

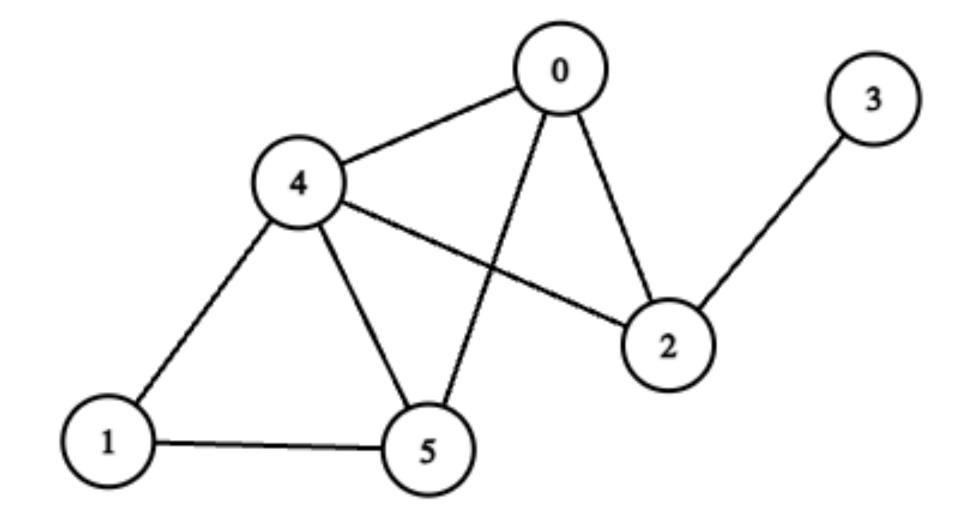
Implementation of depth-first search in Java

```
public void dfs(int s) {
   boolean[] marked = new boolean[V]; //marked[v] - is there an s-v path?
    int[] edgeTo = new int[V]; //edgeTo[v] = previous vertex on path from s to v
   int[] distTo = new int[V]; //distTo[v] - distance from s to v
   for (int i = 0; i < V; i++) {</pre>
       distTo[i] = -1; // initialize distances to -1
   marked[s] = true;
   distTo[s] = 0;
   dfsHelper(s, marked, edgeTo, distTo);
 private void dfsHelper(int v, boolean[] marked, int[] edgeTo, int[] distTo) {
      for (int w : adj[v]) {
          if (!marked[w]) {
              marked[w] = true;
               edgeTo[w] = v;
               distTo[w] = distTo[v] + 1;
               dfsHelper(w, marked, edgeTo, distTo);
```

for each adjacent vertex, mark it and call DFS on it

Worksheet time!

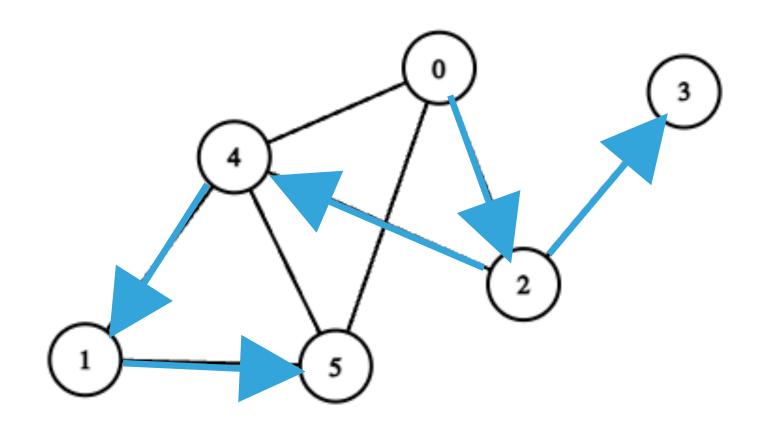
order.



Run DFS on the following graph starting at vertex 0 and return the vertices in the order of being marked. Assume that the adjacent vertices are returned in increasing numerical

Worksheet answers

• Vertices marked as visited: 0, 2, 3, 4, 1, 5



	marked	edgeTo
0	Т	_
1	Т	4
2	Т	0
3	Т	2
4	Т	2
5	Т	1

Depth-first search analysis

- DFS marks all vertices connected to s in time proportional to |V| + |E| in the worst case.
 - Initializing arrays marked and edgeTo takes time proportional to |V|.
 - Each adjacency-list entry is examined exactly once and there are 2|E| such entries (two for each edge in an undirected graph).
- Once we run DFS, we can check if vertex v is connected to s in constant time (look into the marked array). We can also find the v-s path (if it exists) in time proportional to its length.

Breadth-first search

Breadth-first search

- get seen first, then the ones 2 away, then the ones 3 away...)
- BFS (from source vertex s) •
 - Put s on a queue and mark it as visited.
 - Repeat until the queue is empty: •
 - Dequeue vertex v.
 - Enqueue each of v's unmarked neighbors and mark them.

Basic idea: BFS traverses vertices in order of distance from **s**. (All of s's adjacent vertices

Algorithms

Algorithms

♣

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE



4.1 BREADTH-FIRST SEARCH DEMO

Order visited: 0, 2, 1, 5, 3, 4

5	٦
_	_

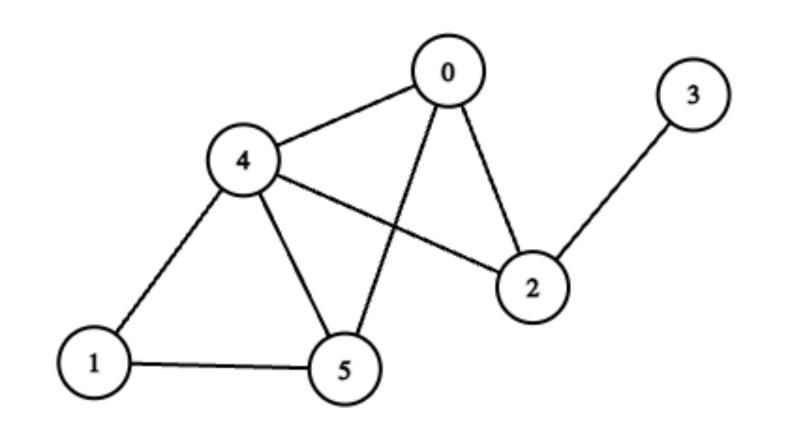
Breadth-first search in Java

```
public void bfs(int s) {
   boolean[] marked = new boolean[V];
   int[] edgeTo = new int[V];
   int[] distTo = new int[V];
   Queue<Integer> queue = new LinkedList<>();
   marked[s] = true;
   distTo[s] = 0;
                                       enqueue s
   queue.add(s);
   while (!queue.isEmpty()) {
                                      dequeue v
       int v = queue.remove();
       for (int w : adj[v]) {
           if (!marked[w]) {
               marked[w] = true;
               edgeTo[w] = v;
               distTo[w] = distTo[v] + 1;
               queue.add(w);
```

enqueue adjacent vertices, w

Worksheet time!

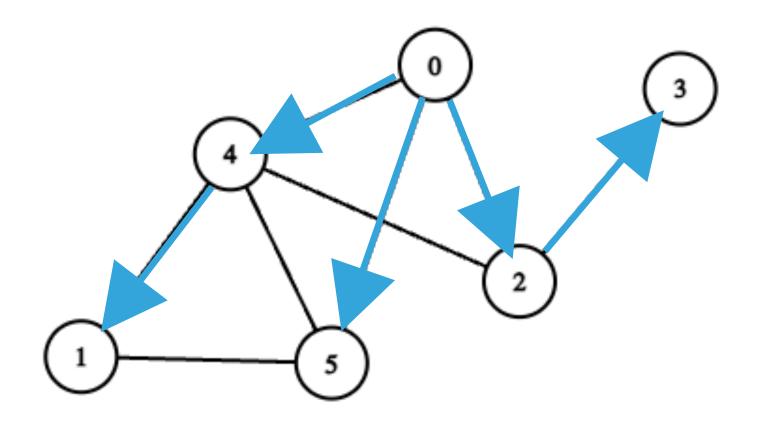
order of being marked. Assume the adjacent vertices are returned in increasing numerical order.



Run the BFS on the following graph starting at vertex 0 and return the vertices in the

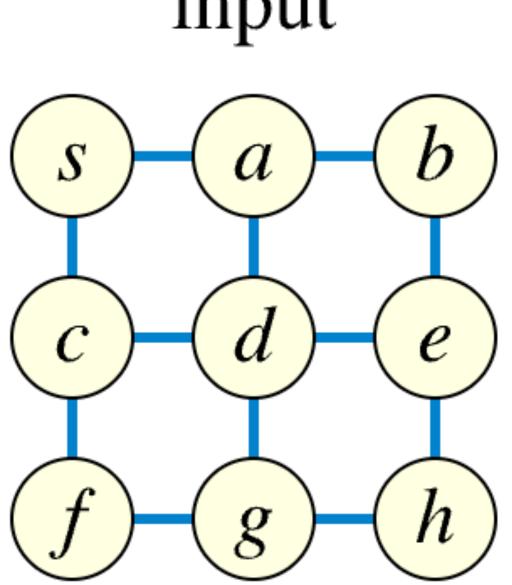
Worksheet answers

Vertices marked as visited: 0, 2, 4, 5, 3, 1



V	marked	edgeTo	distTo
0	Т	_	0
1	Т	4	2
2	Т	0	1
3	Т	2	2
4	Т	0	1
5	Т	0	1

• are returned in lexicographic (i.e., alphabetical) order.

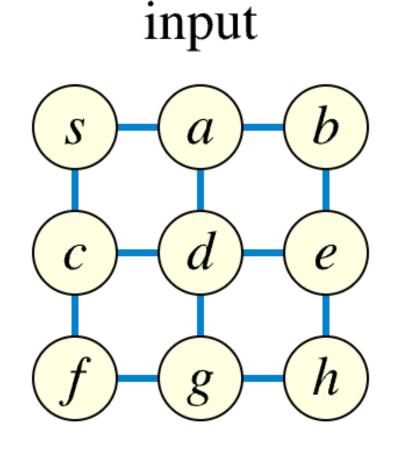


Run DFS and BFS on the following graph starting at vertex s. Assume the adjacent vertices

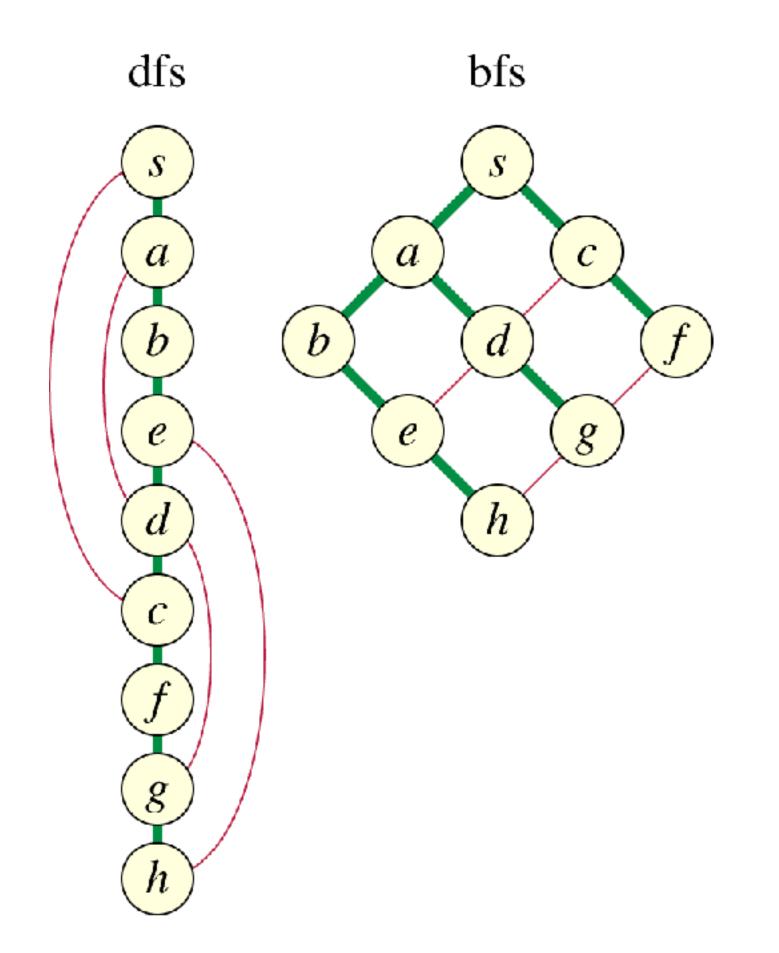
input

Worksheet answer

- returns back the adjacent vertices in lexicographic order.
- DFS: s->a->b->e->d->c->f->g->h
- BFS: s->a->c->b->d->f->e->g->h



Run DFS and BFS on the following graph starting at vertex s. Assume that the adj method



Summary

- **DFS**: Uses recursion.
- **BFS**: Put unvisited vertices on a queue.
- Shortest path problem: Find path from s to t that uses the fewest number of edges.
 - E.g., calculate the fewest numbers of hops in a communication network.
 - E.g., calculate the Kevin Bacon number or Erdös number.
- **BFS computes shortest paths** from s to all vertices in a graph in time proportional to |E| + |V|
 - The queue always consists of zero or more vertices of distance k from s, followed by zero or more vertices of k+1.
 - DFS, on the other hand, will find *a path*, but it's not guaranteed to be the shortest one.

Directed graphs

Directed Graph Terminology

- Directed Graph (digraph) : a set of vertices V connected pairwise by a set of directed edges E.
- Directed path: a sequence of vertices in which there is a directed edge pointing from each vertex in the sequence to its successor in the sequence, with no repeated edges. (Basically just a path in the graph.)
 - A simple directed path is a directed path with no repeated vertices.
- Directed cycle: Directed path with at least one edge whose first and last vertices are the same.
 - A simple directed cycle is a directed cycle with no repeated vertices (other than the first and last).
- The length of a cycle or a path is its number of edges.

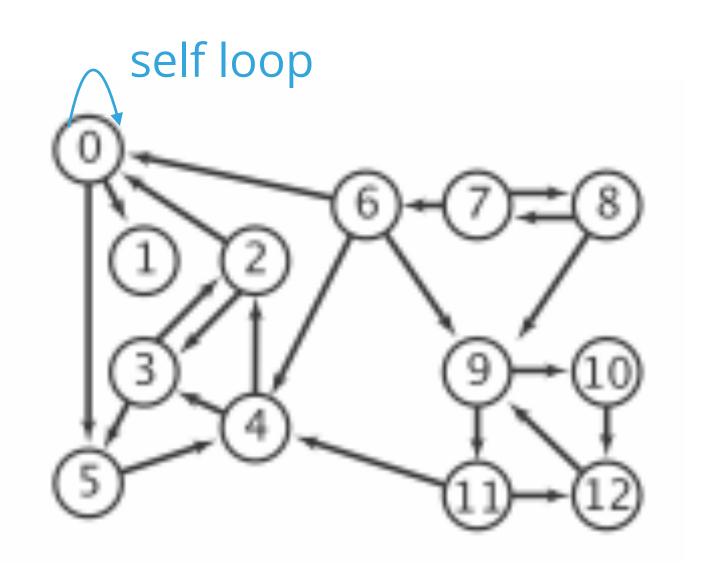
eage directed vertex cycle of éngth directed path of vertex of length 4 indegree 3 and outdegree 2

directed

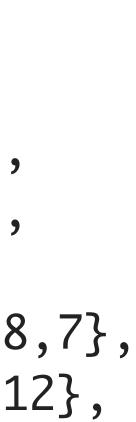
Anatomy of a digraph

Directed Graph Terminology

- Self-loop: an edge that connects a vertex to itself.
- Two edges are parallel if they connect the same pair of vertices.
- The outdegree of a vertex is the number of edges pointing from it.
- The indegree of a vertex is the number of edges pointing to it.
- A vertex w is reachable from a vertex v if there is a directed path from v to w.
- Two vertices v and w are strongly connected if they are mutually reachable.

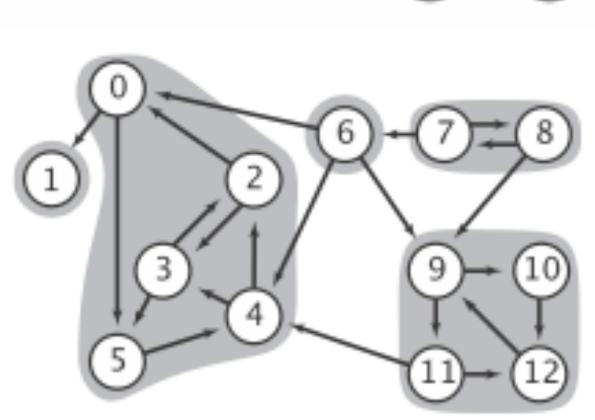


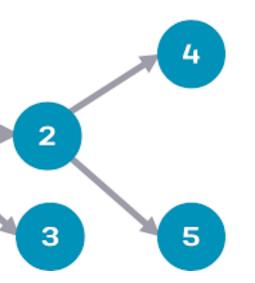
 $\mathsf{E} = \{\{0,0\}, \{0,1\}, \{0,5\},$ $\{2,0\}, \{2,3\}, \{3,2\}, \{3,5\},$ $\{4,2\},\{4,3\},\{5,4\},\{6,0\},\$ $\{6,4\},\{6,9\},\{7,6\},\{7,8\},\{8,7\},$ $\{8,9\},\{9,10\},\{9,11\},\{10,12\},$ $\{11,4\},\{11,12\},\{12,9\}\}.$



Directed Graph Terminology

- A digraph is strongly connected if there is a directed path from every vertex to every other vertex.
- A digraph that is not strongly connected consists of a set of strongly connected components, which are maximal strongly connected subgraphs.
- A directed acyclic graph (DAG) is a digraph with no directed cycles.





A digraph and its strong components

Digraph Applications

Digraph	Vertex	Edge	
Web	Web page Link		
Cell phone	Person Placed call		
Financial	Bank Transaction		
Transportation	Intersection	One-way street	
Game	Board	Legal move	
Citation	Article Citation		
Infectious Diseases	Person	Infection	
Food web	Species	Predator-prey relationship	

Popular digraph problems

Problem	Description
s->t path	Is there a path fro
Shortest s->t path	What is the shorte
Directed cycle	Is there a directed
Topological sort	Can vertices be so vertices?
Strong connectivity	Is there a directed

- om s to t?
- test path from s to t?
- d cycle in the digraph?
- orted so all edges point from earlier to later
- d path between every pair of vertices?

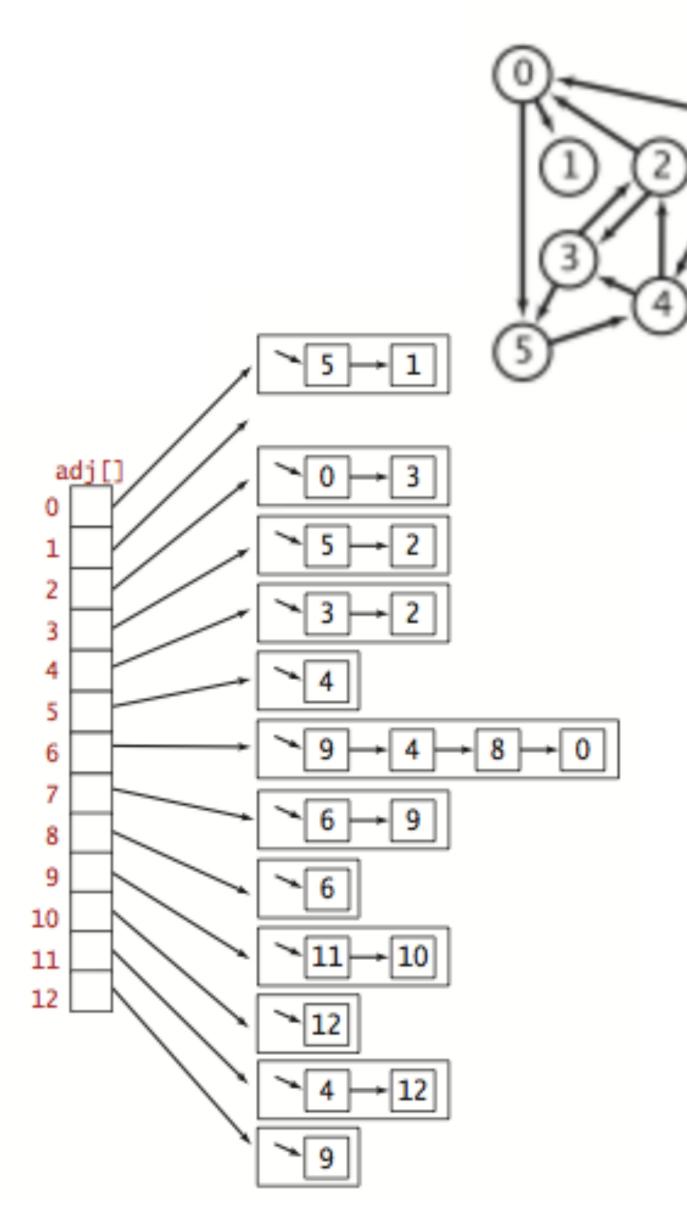
Basic Graph API

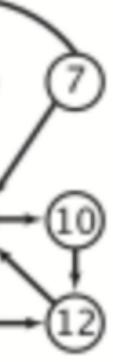
public class Digraph

- Digraph(int V): create an empty digraph with V vertices.
- void addEdge(int v, int w): add an edge v->w.
- Iterable<Integer> adj(int v): return vertices adjacent from v.
- int V(): number of vertices.
- int E(): number of edges.
- Digraph reverse(): reverse edges of digraph.

Digraph representation: adjacency list

- Maintain vertex-indexed array of lists.
- Good for sparse graphs (edges proportional to |V|) which are much more common in the real world.
- Algorithms based on iterating over vertices adjacent from v.
- Space efficient (|E| + |V|).
- Constant time for adding a directed edge.
- New difference: Lookup of a directed edge or iterating over vertices adjacent from v is outdegree(v).





Adjacency-list digraph representation in Java

```
public class DirectedGraph {
 9
        private final int V;
10
       private int E;
11
       private final List<Integer>[] adj;
12
13
       @SuppressWarnings("unchecked")
14
        public DirectedGraph(int V) {
15
            this.V = V;
16
           this.E = 0;
17
18
            adj = (List<Integer>[]) new List[V];
            for (int v = 0; v < V; v++) {
19
                adj[v] = new ArrayList<>();
20
21
22
23
        public void addEdge(int v, int w) {
24
25
            E++;
            adj[v].add(w); // Directed edge from v to w
26
27
        }
28
        public Iterable<Integer> adj(int v) {
29
            return adj[v];
30
31
32
```

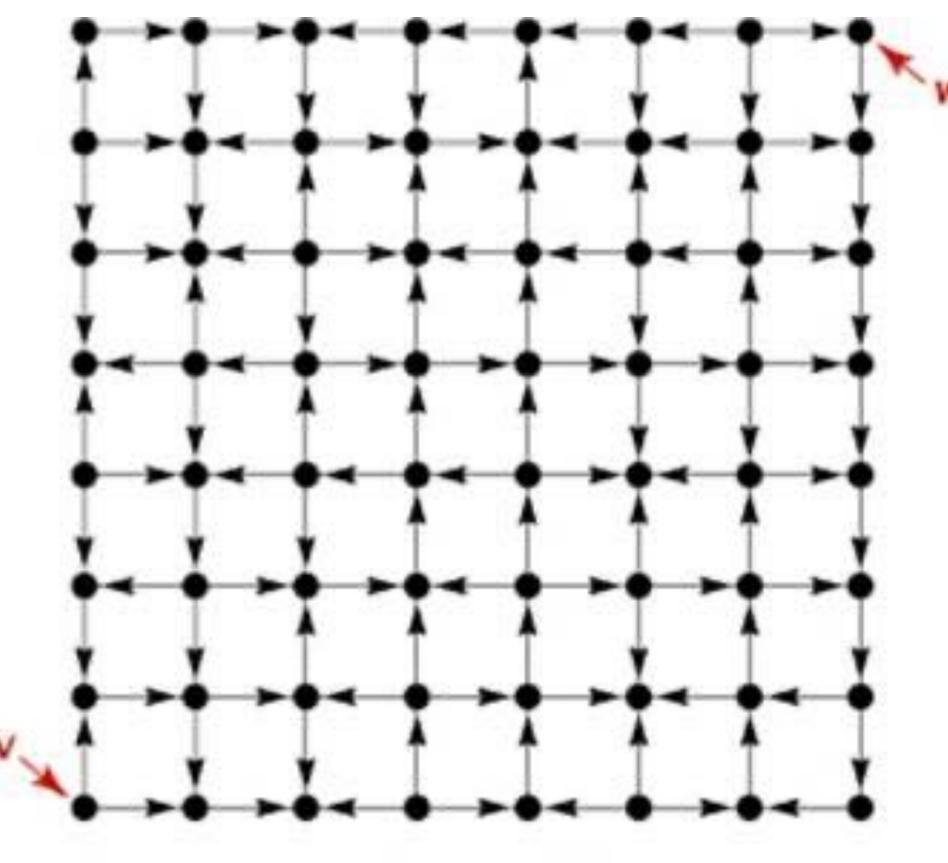
Very similar to undirected graph implementation, main change is adding directed edges (1 edge,

```
not 2)
          //adds undirected edge v-w to graph. parallel edges and
          self-loops allowed
          public void addEdge(int v, int w) {
              E++;
              adj[v].add(w);
              adj[w].add(v);
```


DFS in Directed graphs

Reachability

• Find all vertices reachable from s along a directed path.



Is w reachable from v in this digraph?

Depth-first search in digraphs

- Same method as for undirected graphs.
 - Every undirected graph is a digraph with edges in both directions.
 - Maximum number of edges in a simple digraph is n(n-1).
- DFS (to visit a vertex v)
 - Mark vertex v.
 - Recursively visit all unmarked vertices w adjacent from v.
- Typical applications:
 - Find a directed path from source vertex s to a given target vertex v.
 - Topological sort (sort so dependencies are ordered, e.g. for fulfilling course pre-reqs).
 - Directed cycle detection.

Algorithms

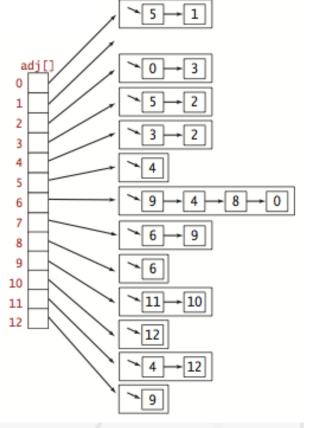
Algorithms

**

Robert Sedgewick | Kevin Wayne

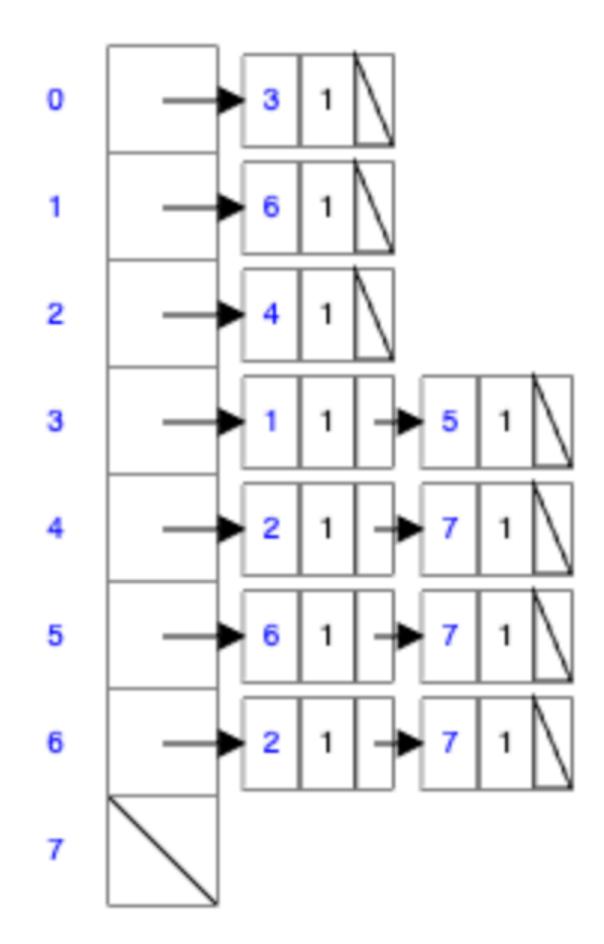
http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE



4.2 DIRECTED DFS DEMO

• starting at vertex 0. In what order did you visit the vertices?

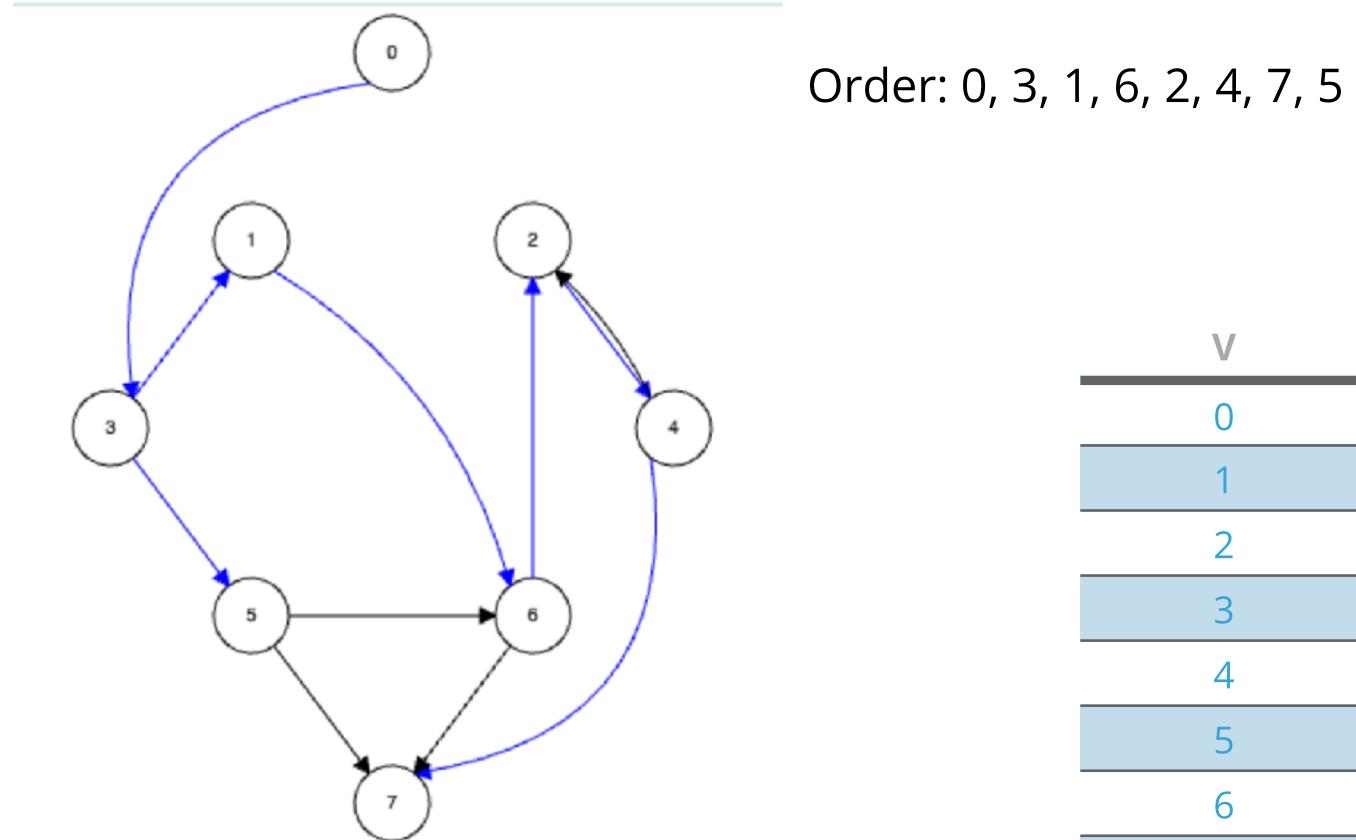


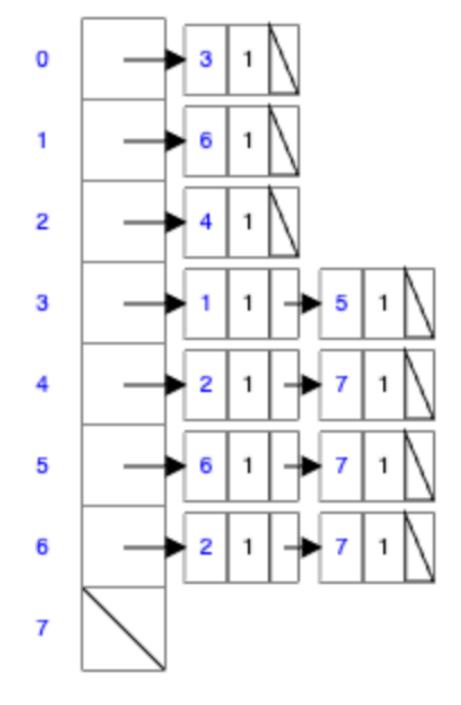
Given the following adjacency list, visualize the resulting digraph and run DFS on it

Note: Ignore the "1" value

Worksheet answer

Given the following adjacency list, visualize the resulting • digraph and run DFS on it starting at vertex 0.





V	marked	edgeTo
0	Т	-
1	Т	3
2	Т	6
3	Т	0
4	Т	2
5	Т	3
6	Т	1
7	Т	4

Depth-first search analysis

- DFS marks all vertices reachable from s in time proportional to |V| + |E| in the worst case.
 - Initializing arrays marked takes time proportional to |V|.
 - Each adjacency-list entry is examined exactly once and there are E such edges (different than undirected graphs, which have 2|E| edges).
- Once we run DFS, we can check if vertex v is reachable from s in constant time (look into the marked array). We can also find the s->v path (if it exists) in time proportional to its length.

BFS in Directed graphs

Breadth-first search

- Same method as for undirected graphs.
 - Every undirected graph is a digraph with edges in both directions.
- BFS (from source vertex s)
 - Put s on queue and mark s as visited.
 - Repeat until the queue is empty:
 - Dequeue vertex v.
 - Enqueue all unmarked vertices adjacent from v, and mark them.
- Typical applications:
 - |E| + |V|.

Find the shortest (in terms of number of edges) directed path between two vertices in time proportional to

Algorithms

Algorithms

♣

Robert Sedgewick | Kevin Wayne

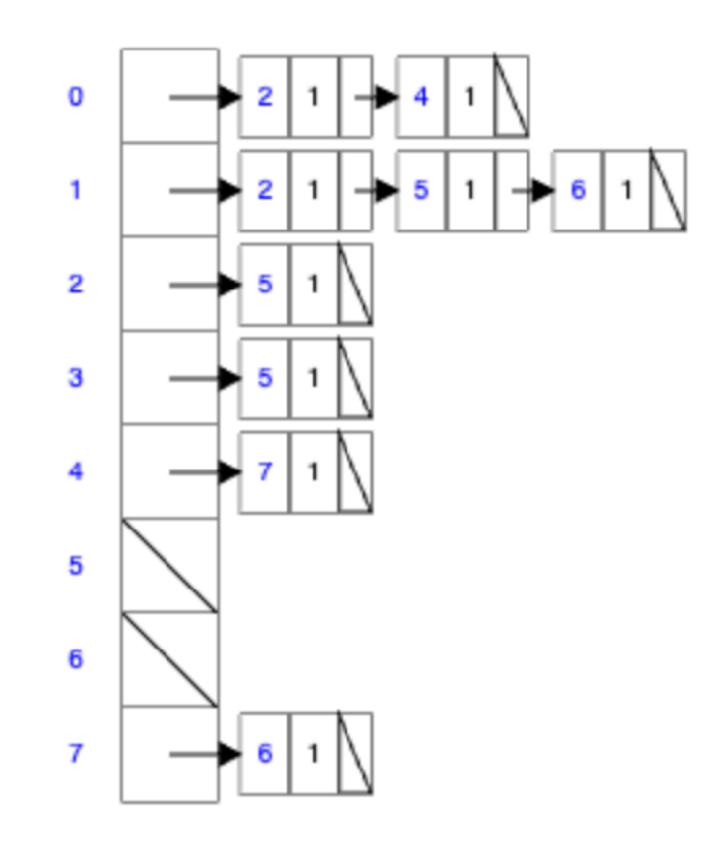
http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

4.2 DIRECTED BFS DEMO

Worksheet time!

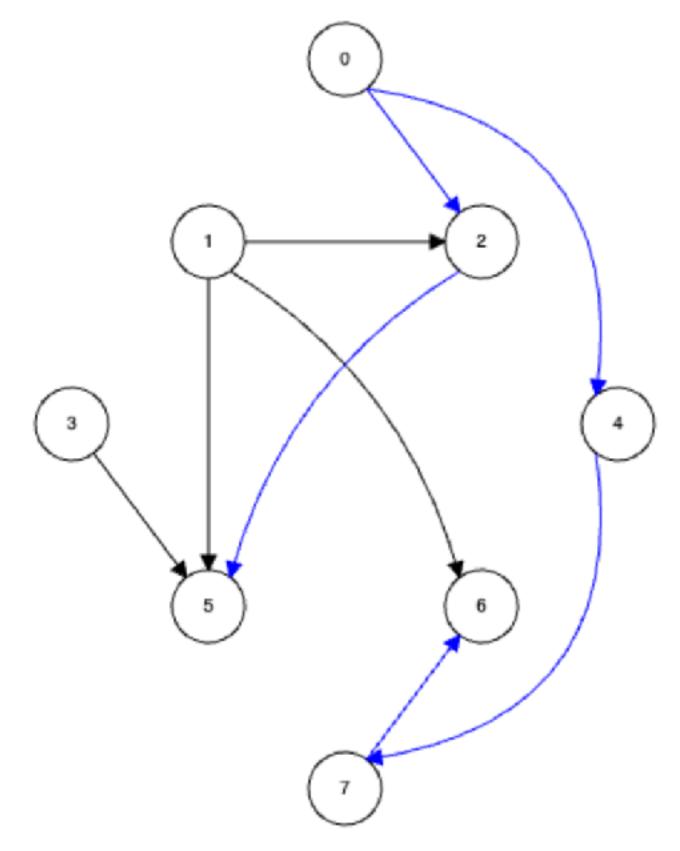
• starting at vertex 0. In what order did you visit the vertices?

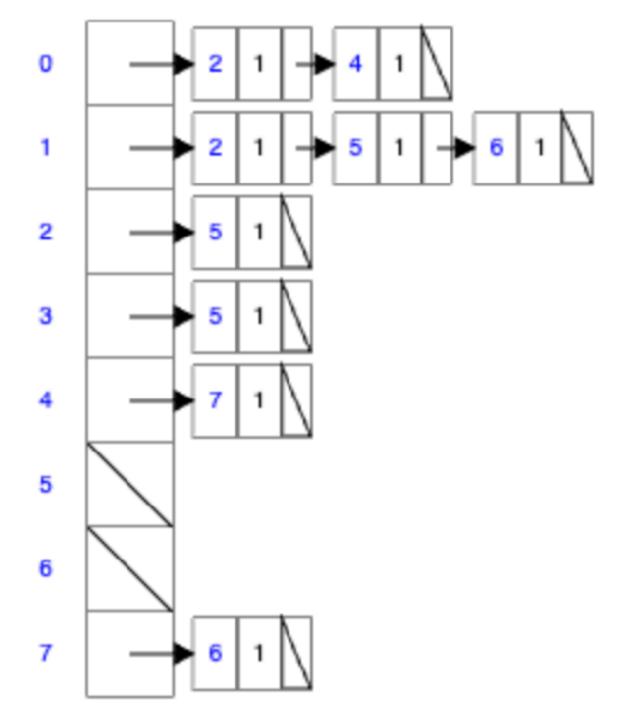


Given the following adjacency list, visualize the resulting digraph and run BFS on it

Worksheet answer

- Given the following adjacency list, visualize the • resulting digraph and run BFS on it starting at vertex 0. In what order did you visit the vertices?
- 0, 2, 4, 5, 7, 6





V	marked	edgeTo	distTo
0	Т	-	0
1	F		
2	Т	0	1
3	F		
4	Т	0	1
5	Т	2	2
6	Т	7	3
7	Т	4	2

Summary

- Single-source reachability in a digraph: DFS/BFS.
- Shortest path in a digraph: BFS.

Algorithm: Is a digraph strongly connected?

- vertex starting from any other vertex by traversing edges.
- Pick a random starting vertex s.
- Run DFS/BFS starting at s. •
 - If have not reached all vertices, return false.
- Reverse edges.
- Run DFS/BFS again on reversed graph.
 - If have not reached all vertices, return false.
 - Else return true.

• A strongly connected digraph is a directed graph in which it is possible to reach any

Lecture 22 wrap-up

- Exit ticket: <u>https://forms.gle/JYzmdDxt58XcrBJ28</u>
- HW9: Transplant Manager due next Tues 11:59pm
- Final project (groups of 2-3 or 3-4...haven't decided yet) released in lab next week

Resources

- Recommended Textbook: Chapter 4.1 (Pages 522-556), Chapter 4.2 (Pages 566-594)
- Website: <u>https://algs4.cs.princeton.edu/41graph/</u>, <u>https://algs4.cs.princeton.edu/</u> 42digraph/
- Visualization: <u>https://visualgo.net/en/dfsbfs</u>
- Practice problems (3!) behind this slide

Problem 1

- What is the maximum number of edges in an undirected graph with V vertices and no parallel edges?
- What is the minimum number of edges in an undirected graph with V vertices, none of which are isolated (have degree 0)?
- What is the maximum number of edges in a digraph with V vertices and no parallel edges?
- What is the minimum number of edges in a digraph with V vertices, none of which are isolated?

Problem 2

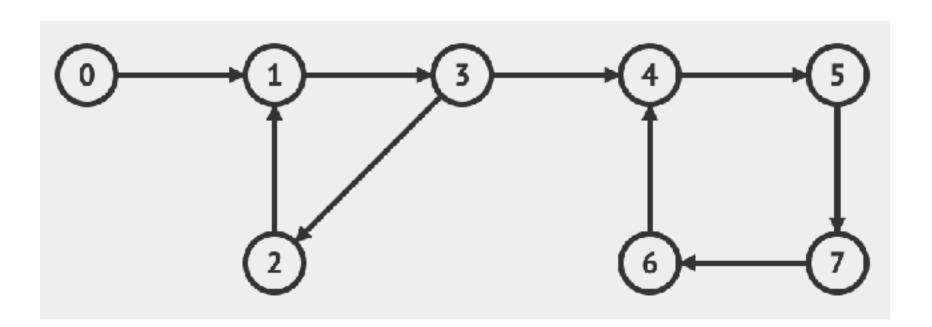
- Assume you are given the following 16 edges of an list in this order:
- 8-4
- 2-3
- 1-11
- 0-6
- 3-6
- 10-3
- 7-11
- 7-8
- • •

Assume you are given the following 16 edges of an undirected graph with 12 vertices, inserted in an adjacency

- 11-82-0
- ► 6-2
- ► 5-2
- ► 5-10
- ► **5-0**
- ▶ 8-1
- 4-1

Problem 3

Run DFS and BFS on the following digraph starting at vertex 0. •



Answer 1

- What is the maximum number of edges in an undirected graph with V vertices and no parallel edges?
 - n(n-1)/2, where n = |V|.
- degree 0)?
 - n-1.
- What is the maximum number of edges in a digraph with V vertices and no parallel edges?
 - n(n-1), where n = |V|.
- What is the minimum number of edges in a digraph with V vertices, none of which are isolated?
 - *n*−1.

What is the minimum number of edges in an undirected graph with V vertices, none of which are isolated (have

Answer 2

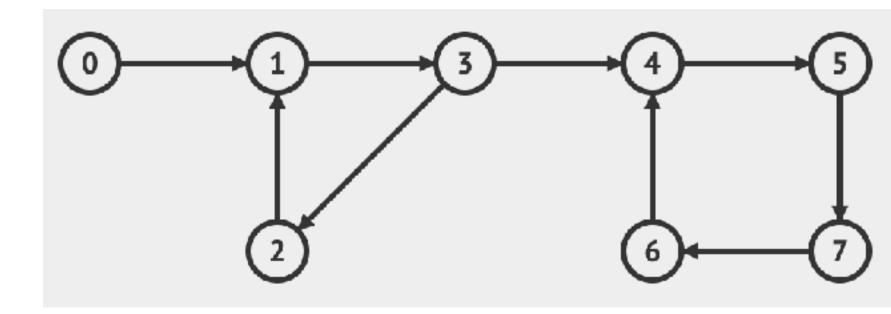
- list in this order:
- 8-4 •
- 2-3 •
- ▶ 11-8 • 1-11
- > 2-0 0-6 •
- 3-6 ▶ 6-2 •
- 10-3 • **5-2**
- 7-11
- 7-8 •
- . . .

- **5-10**
- ► **5-0**
- ▶ 8-1
- 4-1

Assume you are given the following 16 edges of an undirected graph with 12 vertices, inserted in an adjacency

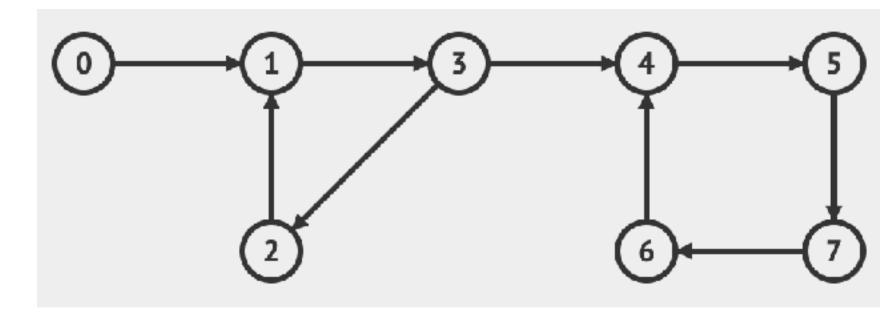
- 0 -> 5 -> 2 -> 6
- ▶ 1 -> 4 -> 8 -> 11
- > 2 -> 5 -> 6 -> 0 -> 3
- > 3 -> 10 -> 6 -> 2
- ▶ 4 -> 1 -> 8
- ▶ 5 -> 0 -> 10 -> 2
- ▶ 6 -> 2 -> 3 -> 0
- ▶ 7 -> 8 -> 11
- ▶ 8 -> 1 -> 11 -> 7 -> 4
- ▶ 9->
- ▶ 10 -> 5 -> 3
- ▶ 11 -> 8 -> 7 -> 1

• DFS - Order of visit: 0, 1, 3, 2, 4, 5, 7, 6



V	marked	edgeTo
0	Т	-
1	Т	0
2	Т	3
3	Т	1
4	Т	3
5	Т	4
6	Т	7
7	Т	5

• BFS - Order of visit: 0, 1, 3, 2 4, 5, 7, 6



marked	edgeTo	distTo
Т	-	0
Т	1	1
Т	3	2
Т	1	2
Т	3	3
Т	4	4
Т	7	6
Т	5	5
	marked T T T T T T	T - T 1 T 3 T 1 T 3 T 3