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Agenda

* Minimum spanning trees
» The cut property
* Prim’s Algorithm

» Kruskal's Algorithm



Minimum Spanning Trees
(MSTs)



Spanning Trees

* Given an edge weighted graph G (not digraph!), a spanning tree
of G is a subgraph T that is:

* Atree: connected and acyclic.

* Spanning: includes all of the vertices of G.
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https://www.tutorialspoint.com/data_structures_algorithms/spanning_tree.htm

Minimum Spanning Trees

A minimum spanning tree is a spanning tree
of minimum total weight.

* Example: Network of power lines that
connect a bunch of buildings.
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Properties

* A connected graph G can have more than one spanning tree, but only one
minimum spanning tree (assuming unique weights).

* All possible spanning trees of G have the same number of vertices and edges.
* Aspanning tree has | V| — 1 edges.
* A spanning tree by definition cannot have any cycle.

* Adding one edge to the spanning tree would create a cycle (i.e. spanning trees
are maximally acyclic).

* Removing one edge from the spanning tree would make the graph disconnected
(i.e. spanning trees are minimally connecteq).



Spanning Trees



Which are Spanning Trees?
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C . . Answer: just C



MST Applications

Left: Old school handwriting recognition (link)

Right: Medical imaging (e.g. arrangement of nuclei in cancer cells)

For more, see: http://www.ics.uci.edu/~eppstein/gina/mst.htm|

o

Figure 4-3: A typical minimum spanning tree



http://dspace.mit.edu/bitstream/handle/1721.1/16727/43551593-MIT.pdf;sequence=2
http://www.ics.uci.edu/~eppstein/gina/mst.html

Today: 2 algorithms to find the MST

Given a connected edge-weighted undirected graph, find a
spanning tree of minimum weight.
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An edge-weighted graph and its MST



MST vs SPT



Worksheet time!

+ What's the difference between a minimum spanning tree versus a shortest path
tree?

» Find the MST for the graph.
 For the SPT for the graph starting at s. (Note it's an undirected graph).



Worksheet answers

 Find the MST for the graph.

» For the SPT for the graph starting at s. (Note it's an undirected graph).
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MST = SPT?

Using which node as the starting node for this SPT will result in
an MST?

-
. B 2 2

* C 3—\@/

° D
* No SPT iIs an MST.



MST = SPT, only sometimes

Using which node as the starting node for this SPT will result in

an MST?
SPT from A )\
° A
. B -/_ er

* C
' D SPT from B, 5 9
MST
* No SPT is an MST. 3 \Er

SPT from C

SPT from D - : Er
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MST = SPT, only sometimes

* A shortest paths tree depends on the start vertex, because it tells you how to get
from a source to EVERYTHING.

* There is no source for a MST.

* Nonetheless, the MST sometimes happens to be an SPT for a specific vertex.



The cut property




A Useful Tool for Finding the MST: Cut Property

» A cutis an assignment of a graph’s nodes to two non-empty sets.
* A crossing edge is an edge which connects a node from one set to a node from the other set.

crossing edge separating

. ray and white vertices
Cut: grey nodes vs white nodes / o

O
O—>

minimum-weight crossing edge
must be in the MST

Cut property: Given any cut, minimum weight crossing edge is in the MST.

* For rest of today, we'll assume edge weights are unique.



Cut Property in Action

Which edge is the minimum weight edge crossing the cut {2, 3, 5, 6}?
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Cut Property in Action

Which edge is the minimum weight edge crossing the cut {2, 3, 5, 6}?

* 0-2. Must be part of the MST!
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Cut Property Proof

Suppose that the minimum crossing edge e were not in the MST.

» Adding e to the MST creates a cycle.
» Some other edge f must also be a crossing edge.
* Removing f and adding e is a lower weight spanning tree.

f
®

* Contradiction!

the MST does
not contain e

adding e to MST
creates a cycle



Generic MST Finding Algorithm

Start with no edges in the MST.

» Find a temporary cut that has no crossing edges in the being built MST.
» Add smallest crossing edge to the MST.
» Repeat until V-1 edges.

This should work, but we need some way of finding a cut with no crossing edges!
» Random isn't a very good idea.

* Prim’s and Kruskal's algorithms are two ways to do it.



Prim’s algorithm




Prim’s algorithm overview

Start with a random vertex and greedily grow tree T.
Add to T the min weight edge with exactly one endpointin T.

Repeat until | V| — 1 edges.



Prim’s Demo (Conceptual)

Start from some arbitrary start node.

» Add shortest edge (mark black) that has one node inside the MST under construction.

Repeat until V-1 edges.
Node  edgeTo 11 ///[i:1\\\\
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Prim’s Demo (Conceptual)

Start from some arbitrary start node.

» Add shortest edge (mark black) that has one node inside the MST under construction.

Repeat until V-1 edges.
Node  edgeTo 11 /|IE|\ 1
: z
- [ e
; 3

Q9 &HOOQm P
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Start from some arbitrary start node.

Prim’s Demo (Conceptual)

» Add shortest edge (mark black) that has one node inside the MST under construction.

Repeat until V-1 edges.

Node

Q19 HO0OOQWP

edgeTo



Start from some arbitrary start node.

Prim’s Demo (Conceptual)

» Add shortest edge (mark black) that has one node inside the MST under construction.

Repeat until V-1 edges.

Node

Q19 HO0OOQWP

edgeTo



Prim’s Demo (Conceptual)

Start from some arbitrary start node.

» Add shortest edge (mark black) that has one node inside the MST under construction.

Repeat until V-1 edges.
Node  edgeTo 11 ///[i:1\\\\
_ 1
z
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Prim’s Demo (Conceptual)

Start from some arbitrary start node.

» Add shortest edge (mark black) that has one node inside the MST under construction.

Repeat until V-1 edges.
Node edgeTo ///[::1\\\\

A

4
F
Which edge is added next?
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Prim’s Demo (Conceptual)

Start from some arbitrary start node.

» Add shortest edge (mark black) that has one node inside the MST under construction.

Repeat until V-1 edges.
Node  edgeTo 11 ///[i:1\\\\
_ 1
:
| @
; 3
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Which edge is added next?

° Either A-B or D-E are guaranteed to work (see exercises for proof)!

* Note: They are not both guaranteed to be in the MST.



Prim’s Demo (Conceptual)

Start from some arbitrary start node.

» Add shortest edge (mark black) that has one node inside the MST under construction.

Repeat until V-1 edges. @
Node edgeTo 11 , :
S :
C A 2 3 ,
. c s[A] > > /
E
F — 1 1 1
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Prim’s Demo (Conceptual)

Start from some arbitrary start node.

» Add shortest edge (mark black) that has one node inside the MST under construction.

Repeat until V-1 edges.
Node edgeTo 11 /|,E|\
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Prim’s Demo (Conceptual)

Start from some arbitrary start node.

» Add shortest edge (mark black) that has one node inside the MST under construction.
Repeat until V-1 edges.

Node edgeTo 11
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Prim’s Demo (Conceptual)

Start from some arbitrary start node.

» Add shortest edge (mark black) that has one node inside the MST under construction.

Repeat until V-1 edges.
Node edgeTo 11 /|,E|\
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Prim’s Demo (Conceptual)

Start from some arbitrary start node.

» Add shortest edge (mark black) that has one node inside the MST under construction.

Repeat until V-1 edges.
Node  edgeTo 11 ?I\
5 1
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Prim’s Demo (Conceptual)

Start from some arbitrary start node.

» Add shortest edge (mark black) that has one node inside the MST under construction.

Repeat until V-1 edges.
Node edgeTo 11 ///£i:l\\\\
_ 1
:
| 3
S
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Done!



Prim’s Algorithm

Start from some arbitrary start node.
edge e = 7-5 added to tree

|

» Repeatedly add shortest edge (mark black) that has one
node inside the MST under construction.
» Repeat until V-1 edges. o

3)
» Suppose we add edge e = v->w. Q e
 Side 1 of cut is all vertices connected to start, side 2 is all @ @
the others.
* No crossing edge is black (all connected edges on side 1).
* No crossing edge has lower weight (consider in increasing
order).

Why does Prim's work? Special case of our generic algorithm. o Y




Worksheet time!

 Starting at node O, run Prim’s to find the MST.




Worksheet answer



Prim’s algorithm
(optimized)




Prim’s Algorithm Implementation

The natural implementation of the conceptual version of Prim’s algorithm is highly
inefficient.

- Example: Iterating over all pink edges shown is unnecessary and slow.

£l

Can use some cleverness and a PQ to speed things up. 11 ,
2
Realistic Implementation Demo 9 3 ,
* Very similar to Dijkstra’'s! $ .
1 1 1
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Prim’s Demo

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node distTo edgeTo ///[::1\\\\

|
- I
- E ,5
‘ e, /

Fringe: [(A: 0), (B: ), (C: ®»), (D: o), (E: ), (F: o), (G: )]
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Prim’s Demo

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node distTo edgeTo /@\

N\
: | G
: S I 3
‘ e, S

Fringe: [(B: ®), (C: ®), (D: o), (E: o), (F: o), (G: )]
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Prim’s Demo

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

vode distTo  edgeTe 2 “|
9 6 N,
e
o / |

Fringe: [(C: 1), (B: 2) (D: ©), (E: o), (F: o), (G: )]
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Prim’s Demo

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node

QHHOQW®

distTo

8 8 8 8 » N O

edgeTo

A
A



Prim’s Demo

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Removed distTo
= part of MST
Node distTo edgeTo 11 I :
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equivalent to edge addition in the conceptual version of

Prim’s. :
Fringe: [(B: 2), (D: o), (E: o), (F: o), (G: )]



Prim’s Demo

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node distTo edgeTo 2
: B
2 .
. , 0@
5

A
A

(0.0

@

Fringe: [(E: 1), (B: 2)|, (F: 15), (D: ™), (G: ™)]
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Prim’s Demo

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node distTo edgeTo 2
- B 2
2 A . * o0
2 2" | I
= 5
O
15 C 1
(00) — e . * 4
o o . \ 1
Note: unlike Dijkstra’s, we consider distance from tree 15

(e.g., Eis 1 away from the tree via C, but would be 2
away from the source A in Dijkstra’s)

Fringe: [(E: 1), (B: 2), (F: 15), (D: ™), (G: ™)]
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Worksheet time!

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

+ We just relaxed C's edges. Show distTo, edgeTo, and fringe after the next relaxation.

Node

QHHOQmP

distTo

2

(0.0

1
15

(0.0

Fringe:

edgeTo

A
A
C
C



Worksheet answers

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.
+ We remove the C->E edge and update D, G, and F. (B not updated)

Node distTo edgeTo 2
A
g A o |
D L 3
BN
: B 1 I »
G

It

Fringe: 2), (G: 3), (F: 4)]



Prim’s Demo

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node distTo edgeTo
2 l
2 U >l /
1

QHHMEOQDP
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Prim’s Demo

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node distTo edgeTo : :

A —

B A 3 2 \-

C A ) .

D 2 E 5 e 307

; ; s V4

F 4 E 1 l 1 4 1

G 3 E ,
15 /

No need to consider B's other

Fringe: [(D: 2), (G: 3), (F: 4)] edges with weight 5 and 3 since
other side is already marked



Prim’s Demo

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node distTo edgeTo 11 ///£%:1\\\\ 1
, ;
7 T
5 3
1 , 1 4 /1/
~Ner” . -
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(0)p)
R

Fringe: [(D: 2), (G: 3), (F: 4)]



Prim’s Demo

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node distTo edgeTo /-<
| 3
5

QHMEOQOAQW D
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Prim’s Demo

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node distTo edgeTo /-<
| 3
5

QHMEODQmP

Fringe: [(G: 1), (F: 4)]



Prim’s Demo

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node distTo edgeTo /-< 11
| 3
5
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N
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Prim’s Demo

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node distTo edgeTo
L_\ 3 , >-
A )
E 3
c S ; /
O © 1 I 1 1

QHMHUODQmP



Prim’s Demo

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node distTo edgeTo /-< /EI\

|
:
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OoaaQmp P



Prim’s Demo

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node distTo edgeTo /-<
| 3
5
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Done! MST is represented by edgeTo array.

Fringe: []



Prim’s algorithm code &
runtime




Prim’s vs. Dijkstra’s

Prim’s and Dijkstra’s algorithms are exactly the same, except Dijkstra’s considers
“distance from the source”, and Prim’s considers “distance from the tree.”

Visit order:

» Dijkstra’s algorithm visits vertices in order of distance from the source.
 Prim's algorithm visits vertices in order of distance from the MST under construction.

Relaxation:
» Relaxation in Dijkstra’s considers an edge better based on distance to source.

» Relaxation in Prim’s considers an edge better based on distance to tree.



public class PrimMST {
public PrimMST (EdgeWeightedGraph G) {

edgeTo
distTo
marked
fringe

distTo[s]

new Edge[G.V () ];

new double[G.V()];

new boolean[G.V()];

new SpecialPQ<Double>(G.V());

= 0.0;

setDistancesToInfinityExceptS(s);
insertAllVertices(fringe); -

/* Get vertices in order of distance from tree.
while (!fringe.isEmpty()) {

int v

fringe.delMin() ;<

scan(G, v);-«

}

5y

Prim’s Implementation (Pseudocode, 1/2)

Fringe is ordered by
distTo tree. Must be a
specialPQ like Dijkstra’s.

Get vertex closest to tree
that is unvisited.

Scan means to consider
all of a vertices outgoing
edges.



Prim’s Implementation (Pseudocode, 2/2)

while (!fringe.isEmpty()) {

int v = fringe.delMin( ) ; «————— Important invariant, fringe must be ordered by
scan(G, V); current best known distance from tree.
}
private volid scan(EdgeWeightedGraph G, int
v) {
marked[v] = true; < Vertex is closest, so add to MST.

for (Edge e : G.adj(v)) {
int w = e.other(v);
if (marked[w]) { continue; } -
if (e.weight() < distTo[w]) {
distTo[w] = e.welght();
edgeTo[w] = e;
pg.decreasePriority(w, distTo[w]);

}

Already in MST, so go to next edge.

Better path to a particular vertex
found, so update current best known
for that vertex.




Prim’s Runtime

while (!fringe.isEmpty()) {
int v = fringe.delMin();
scan(G, Vv);

'
private volid scan(EdgeWeightedGraph G, int
v) A

marked[v] = true;

for (Edge e : G.adj(v)) {
int w = e.other(v);
if (marked[w]) { continue; }
if (e.weight() < distTo[w]) {
distTo[w] = e.welght();
edgeTo[w] = e;
pg.decreasePriority(w, distTo[w]);

}

Q: What is the runtime of Prim’s
algorithm?

* Assume all PQ operations take
O(log(V)) time.

* Give your answer in Big O notation.



Prim’s Algorithm Runtime

Priority Queue operation count, assuming binary heap based PQ:

* Insertion: V operations, each costing O(log V) time.
+ Delete-min: V operations, each costing O(log V) time.
» Decrease priority: E operations, each costing O(log V) time.

Overall runtime: O(V*log(V) + V*log(V) + E*log(V)).

» Assuming E >V, this is just O(E log V) (Same as Dijkstra's).

PQ add
PQ delMin

PQ decreasePriority

# Operations

V
V
O(E)

Cost per operation

O(log V)
O(log V)
O(log V)

Total cost

O(V log V)
O(V log V)
O(E log V)



Kruskal’s algorithm



Kruskal’s algorithm overview

Sort edges in ascending order of weight.

Starting from the one with the smallest weight, add it to the MST unless doing so would create a
cycle.

Uses union-find, a data structure we haven't covered.



Kruskal’s Demo

Consider edges in order of increasing weight. Add to MST unless a cycle is created.

Repeat until V-1 edges.
1 /|IEI\
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MST: []



Kruskal’s Demo

Consider edges in order of increasing weight. Add to MST unless a cycle is created.

Repeat until V-1 edges.
1 /|I1|\ 1
| 3

3

: S Ng
w, P o
e, /

White and green colorings for
MST: [] vertices show cut being implicitly
utilized by Kruskal’s algorithm.
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Kruskal’s Demo

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.
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Kruskal’s Demo

Consider edges in order of increasing weight. Add to MST unless a cycle is created.

Repeat until V-1 edges.

!
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H OO HdH0MH®®EQ @ =

MST:
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Cycle?
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White and green colorings for
vertices show cut being implicitly
utilized by Kruskal’s algorithm.



Kruskal’s Demo

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.
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Kruskal’s Demo

Consider edges in order of increasing weight. Add to MST unless a cycle is created.

Repeat until V-1 edges.

!

OWUJMG)IUITH:J’WUO
H OO HHd0dH@©Q GO M™

MST:

R RO WWWNR - R

o

[A-C, C-E]

Cycle?

Note that unlike Prim'’s, the in-
progress MST is not guaranteed

to be connected /EI\

-
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|
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White and green colorings for
vertices show cut being implicitly
utilized by Kruskal’s algorithm.



Kruskal’s Demo

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

A—C 1
CcC—5 1
BD—-G 1
F-G 1
A-B 2
E-B 3
D-E 3
G-E 3
E-F 4
B-C 5
B-D 11 Cycle? No.
C-F 15

MST:

[A-C, C-E, D-G]
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Kruskal’s Demo

Consider edges in order of increasing weight. Add to MST unless a cycle is created.

Repeat until V-1 edges.

A—C 1
CcC—5 1
BD—-G 1
F-G 1
A-B 2
E-B 3
D-E 3
G-E 3
E-F 4
B-C 5
B-D 11 Cycle?
C-F 15

MST:

[A-C, C-E, D-G]

-

11/|I1|\
s
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=
~No . S

White and green colorings for
vertices show cut being implicitly
utilized by Kruskal’s algorithm.



Kruskal’s Demo

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

A—C 1

CcC—5 1

BD—-G 1

-G 1

A-B 2

E-B 3

D-E 3

G-E 3

E-F 4

B-C 5

B-D 11 Cycle? No.
C-F 15

MST: [A-C, C-E, D-G, F-G]
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Kruskal’s Demo

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

A—C 1

CcC—5 1

BD—-G 1

-G 1

A-B 2

E-B 3

D-E 3

G-E 3

E-F 4

B-C 5

B-D 11 Cycle?
C-F 15

MST: [A-C, C-E, D-G, F-G]

o

11/|I1|\
s
27| S -
=
~Nr . \/

White and green colorings for
vertices show cut being implicitly
utilized by Kruskal’s algorithm.



Kruskal’s Demo

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

A—C 1

c—E 1

BD—-G 1

-G 1

A—B 2

E-B 3

D-E 3

G-E 3 s| A
E-F 4

B-C 5

B-D 11 Cycle? No.
C-F 15

MST:

[A-C, C-E, D-G, F-G, A-B]
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Kruskal’s Demo

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

A—C 1

c—E 1

BD—-G 1

-G 1

A—B 2

E-B 3

D-E 3

G-E 3 s| Al
E-F 4

B-C 5

B-D 11 Cycle?
C-F 15

MST:

[A-C, C-E, D-G, F-G, A-B]
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White and green colorings for
vertices show cut being implicitly
utilized by Kruskal’s algorithm.



Kruskal’s Demo

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

A—C 1
ol - 1
B—G 1
E-G 1
A—B 2
E-B 3
D-E 3
G-E 3
E-F 4
B-C 5
B-D 11
C-F 15
MST: [A-C,

s

Cycle? Yes. Reject!

C-E, D-G, F-G, A-B]

e

e
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Kruskal’s Demo

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

A—C 1

c—E 1

BD—-G 1

-G 1

A—B 2

E—B 3

D-E 3

G-E 3 s| Al
E-F 4

B-C 5

B-D 11 Cycle?

C-F 15

MSsT: [A-C, C-E, D-G, F-G, A-B]

11/|,1|\
s
27| s | -
=
~Nr . \/

White and green colorings for
vertices show cut being implicitly
utilized by Kruskal’s algorithm.



Kruskal’s Demo

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

A—C 1

- i /|IE\ 1
-G 1

A-B 2 ¥

E-B 3 2 3 , -
p-E— 3 3

G-F 3 S 5 /
E-F 4 1 ' 1 \4 1
B-C 5

O, Cycle? No. - \ /

C-F 15 V-1 edges, so we're done!

MST: [A-C, C-E, D-G, F-G, A-B, D-E]



Kruskal’s Algorithm

Initially mark all edges gray.

» Consider edges in increasing order of weight.

+ Add edge to MST (mark black) unless doing so creates a cycle.
* Repeat until V-1 edges.

Why does Kruskal's work? Special case of generic MST algorithm
(similar proof to Prim’s).

» Suppose we add edge e = v->w.

 Side 1 of cut is all vertices connected to v, side 2 is everything
else.

» No crossing edge is black (since we don't allow cycles).
» No crossing edge has lower weight (consider in increasing order).

How do we implement Kruskal's? Add the edges to a PQ (instead of

vertices) and remove them one by one, checking for cycles, until V-1
edges have been added to the MST.

®
®

add edge to tree

©®



Worksheet time!

* Run Kruskal's on this graph.

Edge

0-1
3-5
1-4
/-8
5-7
0-8
Q-2
3-0
3-7
1-2
2-3
3-8
4-5
4-3
2-0
1-3



Worksheet answer
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Kruskal’s code and runtime




Kruskal’s Implementation (Pseudocode)

public class KruskalMST {
private List<Edge> mst = new ArrayList<Edge>();

public KruskalMST(EdgeWeightedGraph G) {
MinPQ<Edge> pg = new MinPQ<Edge>();
for (Edge e : G.edges()) {
pg.lnsert(e);

) We don't cover this data structure
WeightedQuickUnionPC uf = (quick union) in the course, see
new WeightedQuickUnionPC(G.V()); resources slide for more

while (!pg.isEmpty() && mst.size() < G.V() - 1)

Edge e = pg.delMin();

int v = e.from();

int w = e.to();

if (!uf.connected(v, w)) {

uf.union(v, w); Run time is O(Elog(E)) if edges are not
mst.add(e); pre-sorted

Storing edges in PQ

P}




Kruskal’s Runtime

Kruskal’s algorithm on previous slide is O(E log E).

Operation Number of Times Time per Operation
Insert E O(log E)
Delete minimum O(E) O(log E)
union O(V) O(log* V)
isConnected O(E) O(log™ V)

Fast heap construction algorithm

Total Time

»

O(E)

O(E log E)
O(E) if edges pre-sorted
O(V log™ V)

O(E log* V)

Note: A weighted quick union is represented as a tree, so most operations are log(H)

Note 1: If we use a pre-sorted list of edges (instead of a PQ), then we can simply iterate through the list in O(E) time (no need

to delete minimum), so overall runtime is O(E + V log* V + E log* V) = O(E log* V).

Note 2: E<VZ,sologE<logV2=2logV, so O(E log E) = O(E log V). So while Kruskal's algorithm will be slower than Prim's

algorithm for a worst-case unsorted set of edges, it won't be asymptotically slower.



Prim’s vs. Kruskal’s (visual)

Prim’s vs. Kruskal’s

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Prim’s Algorithm Kruskal’s Algorithm

Demos courtesy of Kevin Wayne, Princeton University

@000



https://www.youtube.com/watch?v=vmWSnkBVvQ0

Shortest Paths and MST Algorithms Summary

Problem Algorithm Runtime (if E > V) Notes

Shortest Paths Dijkstra's O(E log V) Fails for negative
weight edges.

MST Prim'’s O(E log V) Analogous to
Dijkstra’'s.
MST Kruskal's with pre- | O(E log V) Uses weighted
sorted edges quick-union with

path compression



Worksheet time!

Run Kruskal's and Prim's algorithm (starting at index 0) on the following graph. Do they give the same answer?




Worksheet answer

Run Kruskal's and Prim's algorithm (starting at index 0) on the following graph.

Yes, same MST.




Lecture 22 wrap-up

» Lab final project check-in tonight

* Final project part 1 (PDF write up with grading contract, dataset, interface file) due Fri
11:59pm

* HW10: On The Road due next Tues 11:59pm

* Checkpoint 3 in two weeks (12/3). Covers material up to next Monday (DAGS).
Class Dec 1 will be course evals + review session + algo design practice (you'll come up
with questions!)

* Too many resources, they are the next slide. :)



Resources

* Graph history: https://cs.pomona.edu/classes/cs62/history/graphs

* Learn more about Dijkstra, Prim, and Kruskal
* Recommended Textbook: Chapter 4.3 (Pages 604-629)
* Website: https://algs4.cs.princeton.edu/43mst/

* Visualization: https://visualgo.net/en/mst

* Weighted quick union: https://joshhug.gitbooks.io/hugb1b/content/chap9/
chap94.html

* Practice problems behind this slide


https://cs.pomona.edu/classes/cs62/history/graphs
https://algs4.cs.princeton.edu/43mst/
https://visualgo.net/en/mst
https://joshhug.gitbooks.io/hug61b/content/chap9/chap94.html
https://joshhug.gitbooks.io/hug61b/content/chap9/chap94.html

Problem 1

| Consider edges in ascending order of weight.
*  Run Kruskal's on this graph

« Add next edge to tree T unless doing so would create a cycle. graph edges

sorted by weight

l

0-7 0.16

2-3 0.17

(::) 1-7 0.19

(::> 0-2 0.26

(::> 5-7 0.28
(::) (::> 1-3 0.29

1-5 0.32

@ 2-7 0.34

4-5 0.35

@ @ 1-2 0.36
4-7 0.37

0-4 0.38

an edge-weighted graph 6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93



Answer 1

Consider edges in ascending order of weight.
« Add next edge to tree T unless doing so would create a cycle.

a minimum spanning tree

0-7
2-3
1-7
0-2
5-7
1-3
1-5
2-7
4-5
1-2
4-7
0-4
6-2
3-6
6-0
6-4

©O O O O O O O O O O O O O O O o

.16
.17

.19
.20
.28
.29
.32
.34
.35
.36
.37
.38
.40
.52
.58
.93



e Start with vertex 0 and greedily grow tree T.

« Add to 7 the min weight edge with exactly one endpoint in T.

+ Run Prim’s on this graph * Repeat until /-1 edges.
starting at 0

an edge-weighted graph
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.16
.17
.19
.20
.28
.29
.32
. 34
.35
.30
.37
.38
.40
.52
.58
.93



e Start with vertex 0 and greedily grow tree T.
« Add to Tthe min weight edge with exactly one endpoint in T.
« Repeat until -1 edges.

MST edges
0-7 1-7 0-2 2-3 5-7 4-5 6-2



