
CS62: Spring 2025 | Lecture #21 (Hashtables Pt 2) worksheet | Jingyi Li

1. Insert the key-value pairs (47, 0), (3, 1), (28, 2), (14, 3), (9,4), (47,5) into an open addressing hash table

of size m = 7.
Assume the hash function is calculated as key % m.

2. Suppose we have a separate chaining hash table of ColoredNumbers. The hashCode is the memory
location while equals() is overridden to check if the ColoredNumber’s num attributes are equal.

 ColoredNumber zero = new ColoredNumber(0);
hs.add(zero);
What can happen when we call hs.add(zero)?
A. We add another 0 to bin zero.
B. We add another 0 to bin one.
C. We add another 0 to some other bin.
D. We do not get a duplicate zero.

3. Fill in the blanks to implement get() in a separate chaining hash table. You can assume you have
access to the hash() method, and an instance variable called table which is an array of Nodes,
where Nodes contain a key, value, and next pointer (they are Nodes in a SLL).

public Value get(Key key) {

 int i = ______________________; //hash the key

 for (______________________________________) { //go through linked list

 if (_____________________) { //if the keys match

 return ______________; //return the value

 }

 }

 return null;

}

