
CS62 Class 23: Shortest paths
Graphs

B

C

D

E

F

G
As

5
2

1

15

3

2
11

5

1

1

41

Agenda
• Last time: BFS on directed graphs, strongly connected digram algorithm

• Edge-weighted graphs

• Shortest paths

• Dijkstra’s algorithm

Last time: Depth first search vs Breadth first search

• Depth first search uses recursion to go “deep” into the
graph (fully follow one node before popping up the
recursive stack and going deep into another node).

• Breadth first search uses a queue to first visit all
nodes that are 1 away, then 2 away, etc…

Order visited: 0, 2, 1, 4, 3, 5

Worksheet time!
• Given the following adjacency list, visualize the resulting digraph and run BFS on it

starting at vertex 0. In what order did you visit the vertices? Is every vertex reachable
from 0?

Worksheet answer
• Given the following adjacency list, visualize the

resulting digraph and run BFS on it starting at vertex
0. In what order did you visit the vertices?

• 0, 2, 4, 5, 7, 6

V marked edgeTo distTo

0 T - 0

1 F

2 T 0 1

3 F

4 T 0 1

5 T 2 2

6 T 7 3

7 T 4 2

No, we never reach 1 or 3 from 0

BFS/DFS space efficiency

Problem Problem Description Solution Efficiency (adj. list)

s-t paths Find a path from s to every
reachable vertex.

DFS O(V+E) time
Θ(V) space

s-t shortest
paths

Find a shortest path from s
to every reachable vertex.

BFS
O(V+E) time
Θ(V) space

Both DFS and BFS run in O(V+E), but use Θ(V) space to keep track of the vertices in
the recursive call (DFS) or queue (BFS).

Give an example of a graph that would make the space efficiency bad for DFS or BFS.

BFS vs. DFS for space efficiency
• DFS is worse for spindly graphs.

• Call stack gets very deep.
• Computer needs Θ(V) memory to remember recursive calls.

• BFS is worse for absurdly “bushy” graphs.
• Queue gets very large. In worst case, queue will require Θ(V) memory.
• Example: 1,000,000 vertices that are all connected. 999,999 will be enqueued at

once.
• Note: In our implementations, we have to spend Θ(V) memory anyway to track

distTo and edgeTo arrays.
• Can optimize by storing distTo and edgeTo in a map instead of an array.

Strongly connected digraph algorithm
• A strongly connected digraph is a directed graph in which it is possible to reach any

vertex starting from any other vertex by traversing edges.

• Pick a random starting vertex s.

• Run DFS/BFS starting at s.

• If have not reached all vertices, return false.

• Reverse edges.

• Run DFS/BFS again on reversed graph.

• If have not reached all vertices, return false.

• Else return true.

Edge-weighted graph

Edge-weighted graphs
• Edge-weighted digraph: a digraph where

we associate weights/costs with each edge.

Weighted directed edge API
• public class DirectedEdge
• DirectedEdge(int v, int w, double weight)
‣ Constructs a weighted edge from v to w (v->w) with the provided weight.

• int from()
‣ Returns vertex source of this edge.

• int to()
‣ Returns vertex destination of this edge.

• double weight()
‣ Returns weight of this edge.

• String toString()
‣ Returns the string representation of this edge.

only difference is we now have weights

Weighted directed edge in Java
public class DirectedEdge {
 private final int v;
 private final int w;
 private final double weight;

 public DirectedEdge(int v, int w, double weight) {
 this.v = v;
 this.w = w;
 this.weight = weight;
 }

 public int from() {
 return v;
 }

 public int to() {
 return w;
 }

 public double weight() {
 return weight;
 }

Edge-weighted digraph API
• public class EdgeWeightedDigraph

• EdgeWeightedDigraph(int v)
‣ Constructs an edge-weighted digraph with v vertices.

• void addEdge(DirectedEdge e)
‣ Add weighted directed edge e.

• Iterable<DirectedEdge> adj(int v)
‣ Returns edges adjacent from v.

• int V()
‣ Returns number of vertices.

• int E()
‣ Returns number of edges.

• Iterable<DirectedEdge> edges()
‣ Returns all edges.

only difference is edges are DirectedEdge
objects instead of integers

Edge-weighted digraph adjacency list representation
• public class EdgeWeightedDigraph
• EdgeWeightedDigraph(int v)

• Constructs an edge-weighted digraph
with V vertices.

• void addEdge(DirectedEdge e)

• Add weighted directed edge e.

• Iterable<DirectedEdge> adj(int v)

• Returns edges adjacent from v.

• int V()

• Returns number of vertices.

• int E()

• Returns number of edges.

• Iterable<DirectedEdge> edges()

• Returns all edges.

Edge-weighted digraph in Java
public class EdgeWeightedDigraph {
 private final int V; // number of vertices in this digraph
 private int E; // number of edges in this digraph
 private SinglyLinkedList<DirectedEdge> adj[];  
 // adj[v] = adjacency list for v

 public EdgeWeightedDigraph(int V) {
 this.V = V;
 this.E = 0;
 adj = new SinglyLinkedList<DirectedEdge>[V];
 for (int v = 0; v < V; v++)
 adj[v] = new SinglyLinkedList<DirectedEdge>();
 }
 public void addEdge(DirectedEdge e) {
 int v = e.from();
 int w = e.to();
 adj[v].add(e);
 E++;
 }

 public Iterable<DirectedEdge> adj(int v) {
 return adj[v];
 }

DirectedEdge instead of int

extract v & w with .from() and .to() getters

Shortest paths

BreadthFirstSearch for Google Maps
BFS would not be a good choice for a Google Maps style navigation application.

• The problem: BFS returns path with shortest number of edges, not necessarily
the shortest path.

• That’s why we need an edge-weighted graph.

 s

 t

260

70

70 10

70

40

20

1530

50

 s

 t

260

70

70 10

70

40
20

1530

50

 s

 t

260

70

70 10

70
30

40
20

15

50

Goal: go from s (green) to t (red)

BFS answer Correct shortest path

Shortest Path variants
• Single source: from one vertex s to every other vertex.

• Single sink: from every vertex to one vertex t.

• Source-sink: from one vertex s to another vertex t.

• All pairs: from every vertex to every other vertex.

• What version is there in Google Maps?

Shortest Paths Assumptions
• Not all vertices need to be reachable.

• We will assume so in this lecture.

• Weights are non-negative.

• There are algorithms that can handle negative weights.

• Shortest paths are not necessarily unique but they are simple.

Worksheet time!
Find the shortest paths from source vertex s to every other vertex. (Single source shortest path)

B

C

D

E

F

G

As
5

2

1

15

3

2
11

5

1

1

41

What data structure does your path look like?

How many edges, as a function of V, are in it?

What algorithm did you as a human come up with?

Worksheet answers
Find the shortest paths from source vertex s to every other vertex. (Single source shortest path)

B

C

D

E

F

G

As
5

2

1

15

3

2
11

5

1

1

41

What data structure does your path look like?

How many edges, as a function of V, are in it?

A tree

E = V-1 (7 vertices, 6 edges)

SPT Edge Count
If G is a connected edge-weighted graph with V vertices and E edges, there are
exactly V-1 edges are in the Shortest Paths Tree (SPT) of G, assuming every vertex is
reachable.

B

C

D

E

F

G

As

Dijkstra’s Algorithm
(bad examples)

Creating an Algorithm
Let’s create an algorithm for finding the shortest paths.

Will start with a bad algorithm and then successively improve it.

• Algorithm begins in state below. All vertices unmarked. All distances infinite. No
edges in the SPT.

∞

B

C

As

5

5
D1

∞

∞

∞

2
2

1

Bad Algorithm #1 (Inspired by BFS)

∞

B

C

As

5

5
D1

∞

∞

∞

2
2

1

Add the start (A) to the fringe.

While fringe is not empty:

 Remove a vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

Bad Algorithm #1 (Inspired by BFS)
Add the start (A) to the fringe.

While fringe is not empty:

 Remove a vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

∞

B

C

As

5

5
D1

∞

∞

∞

2
2

1
Fringe: [A]

Bad Algorithm #1 (Inspired by BFS)

∞

B

C

As

5

5
D1

∞

∞

∞

2
2

1
Fringe: [A]
Removed vertex: A

Add the start (A) to the fringe.

While fringe is not empty:

 Remove a vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

Bad Algorithm #1 (Inspired by BFS)

∞

B

C

As

5

5
D1

∞

∞

∞

2
2

1

5

1
Fringe: [A, B, C]
Removed vertex: A

Add the start (A) to the fringe.

While fringe is not empty:

 Remove a vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

Bad Algorithm #1 (Inspired by BFS)

∞

B

C

As

5

5
D1

∞

∞

∞

2
2

1

5

1
Fringe: [A, B, C]
Removed vertex: B

Add the start (A) to the fringe.

While fringe is not empty:

 Remove a vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

Bad Algorithm #1 (Inspired by BFS)

∞

B

C

As

5

5
D1

∞

∞

∞

2
2

1

5

1

7

The edge B→A is not
added to SPT,
because A is already
part of the SPT.

Fringe: [A, B, C, D]
Removed vertex: B

Add the start (A) to the fringe.

While fringe is not empty:

 Remove a vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

Bad Algorithm #1 (Inspired by BFS)

∞

B

C

As

5

5
D1

∞

∞

∞

2
2

1

5

1

7

Fringe: [A, B, C, D]
Removed vertex: C

Add the start (A) to the fringe.

While fringe is not empty:

 Remove a vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

Bad Algorithm #1 (Inspired by BFS)

∞

B

C

As

5

5
D1

∞

∞

∞

2
2

1

5

1

7 Nothing happens.

C→B not added, B
already in SPT.

C→D not added, D
already in SPT.

Fringe: [A, B, C, D]
Removed vertex: C

Add the start (A) to the fringe.

While fringe is not empty:

 Remove a vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

Bad Algorithm #1 (Inspired by BFS)

∞

B

C

As

5

5
D1

∞

∞

∞

2
2

1

5

1

7

Fringe: [A, B, C, D]
Removed vertex: D

Add the start (A) to the fringe.

While fringe is not empty:

 Remove a vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

Bad Algorithm #1 (Inspired by BFS)

∞

B

C

As

5

5
D1

∞

∞

∞

2
2

1

5

1

7

Fringe: [A, B, C, D]
Removed vertex: D

Add the start (A) to the fringe.

While fringe is not empty:

 Remove a vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

Nothing happens.

D has no neighbors
(there are no edges
going out of D).

Bad Algorithm #1 (Inspired by BFS)
Add the start (A) to the fringe.

While fringe is not empty:

 Remove a vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

Takeaways:

• This algorithm would work if all our edges were the same length.

Algorithm #1 (BFS) visits:
 every node 1 edge away,
then every node 2 edges away,
then every node 3 edges away, etc.

Bad Algorithm #2 (Dummy Nodes)
Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every
unit along an edge, then run breadth-first search.

• When we hit one of our original nodes, add edge to the SPT.

B

C

As

5

5
D1

∞

∞

∞

2
2

1

B

C

As D

∞

∞

∞

Order of visited nodes:

Bad Algorithm #2 (Dummy Nodes)
Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every
unit along an edge, then run breadth-first search.

• When we hit one of our original nodes, add edge to the SPT.

B

C

As

5

5
D1

∞

0

∞

2
2

1

B

C

As D

∞

0

∞

∞ ∞

Order of visited nodes: A

Bad Algorithm #2 (Dummy Nodes)
Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every
unit along an edge, then run breadth-first search.

• When we hit one of our original nodes, add edge to the SPT.

B

C

As

5

5
D1

1

0

∞

2
2

1

B

C

As D

1

0

∞

∞∞

Order of visited nodes: AC

Bad Algorithm #2 (Dummy Nodes)
Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every
unit along an edge, then run breadth-first search.

• When we hit one of our original nodes, add edge to the SPT.

B

C

As

5

5
D1

1

0

2

2
2

1

B

C

As D

1

0

2

∞∞

Order of visited nodes: ACB

Bad Algorithm #2 (Dummy Nodes)
Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every
unit along an edge, then run breadth-first search.

• When we hit one of our original nodes, add edge to the SPT.

B

C

As

5

5
D1

1

0

2

2
2

1

B

C

As D

1

0

2

∞∞

Order of visited nodes: ACB

Bad Algorithm #2 (Dummy Nodes)
Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every
unit along an edge, then run breadth-first search.

• When we hit one of our original nodes, add edge to the SPT.

B

C

As

5

5
D1

1

0

2

2
2

1

B

C

As D

1

0

2

44

Order of visited nodes: ACBD

Bad Algorithm #2 (Dummy Nodes)
Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every
unit along an edge, then run breadth-first search.

• When we hit one of our original nodes, add edge to the SPT.

B

C

As

5

5
D1

1

0

2

2
2

1

B

C

As D

1

0

2

44

Order of visited nodes: ACBD

Bad Algorithm #2 (Dummy Nodes)
Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every
unit along an edge, then run breadth-first search.

Takeaways:

• It works, but can be really slow. For example, consider the graph below.
• What if we measured in inches instead of miles? Or had fractional weights?

B

C

As

316800

D

∞

∞

∞

∞

316800

126720

126720

63360

63360

Bad Algorithm #2 (Dummy Nodes)
Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every
unit along an edge, then run breadth-first search.

Takeaways:

• Algorithm #2 order is sometimes called best-first order.
• Let's try to visit the nodes in the same order as Algorithm #2 did, but without

creating dummy nodes.

Algorithm #1 (BFS) visits:
 every node 1 edge away,
then every node 2 edges away,
then every node 3 edges away, etc.

Algorithm #2 (dummy nodes) visits:
 every node distance 1 away,
then every node distance 2 away,
then every node distance 3 away, etc.

Bad Algorithm #3 (Best-First Search)
Bad algorithm #3: Perform best-first search.

• Similar to BFS, but we remove the closest edge from the fringe each time.
• We can use a priority queue to track the closest edge.

∞

B

C

As

5

5
D1

∞

∞

∞

2
2

1

Bad Algorithm #3 (Best-First Search)
Add the start (A) to the fringe.

While fringe is not empty:

 Remove the closest vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

Fringe: [A=0]

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

Only difference from Algorithm #1:
We added the word "closest".

Bad Algorithm #3 (Best-First Search)
Add the start (A) to the fringe.

While fringe is not empty:

 Remove the closest vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

Fringe: [A=0]
Removed vertex: A

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

Bad Algorithm #3 (Best-First Search)
Add the start (A) to the fringe.

While fringe is not empty:

 Remove the closest vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5]
Removed vertex: A

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

5

1

Bad Algorithm #3 (Best-First Search)
Add the start (A) to the fringe.

While fringe is not empty:

 Remove the closest vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5]
Removed vertex: C

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

5

1

In BFS, we removed B
here, but in best-first,
we're removing C
because it's closer.

Bad Algorithm #3 (Best-First Search)
Add the start (A) to the fringe.

While fringe is not empty:

 Remove the closest vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5, D=6]
Removed vertex: C

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

5

1

6

Bad Algorithm #3 (Best-First Search)
Add the start (A) to the fringe.

While fringe is not empty:

 Remove the closest vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5, D=6]
Removed vertex: B

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

5

1

6

Bad Algorithm #3 (Best-First Search)
Add the start (A) to the fringe.

While fringe is not empty:

 Remove the closest vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5, D=6]
Removed vertex: B

The only outgoing edge
is B→D.
D is already part of the
SPT, so do nothing. ∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

5

1

6

Bad Algorithm #3 (Best-First Search)
Add the start (A) to the fringe.

While fringe is not empty:

 Remove the closest vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5, D=6]
Removed vertex: D

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

1

6

Bad Algorithm #3 (Best-First Search)
Add the start (A) to the fringe.

While fringe is not empty:

 Remove the closest vertex from the fringe and mark it.

 For each outgoing edge v→w: if w is not already part of SPT,
 add the edge, and add w to fringe.

Fringe: [A=0, C=1, B=5, D=6]
Removed vertex: D

No outgoing edges
from D, so do nothing.

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

1

6

Bad Algorithm #3 (Best-First Search)
Bad algorithm #3: Perform best-first search.

• Similar to BFS, but we remove the closest edge from the fringe each time.
• We can use a priority queue to track the closest edge.

Takeaways:

• Pro: We visited the nodes in best-first order (same order as in Algorithm #2),
without creating dummy nodes.

• Con: We got the wrong answer. Why?
• Let's revisit the step where things went wrong.

Bad Algorithm #3 (Best-First Search)
For each outgoing edge v→w: if w is not already part of SPT, add the edge,
mark w, and add w to fringe.

Fringe: [A=0, C=1, B=5, D=6]
Removed vertex: C

• We should have added edge C→B, and thrown
out the old edge (A→B) to B. Why?

• The distance to B via C→B is 2.

This is better than the currently best known
distance to B (5, via A→B).

C→B edge: B was in the SPT (via A→B), so we did nothing.

What should we have done here?

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

5

1

6

Finding a Shortest Paths Tree Algorithmically
Dijkstra's Algorithm:

• So far, we've added an edge v→w if w is not already part of the SPT.
• Instead, we should add an edge if that edge yields better distance.
• Use the priority queue to track best known distances.

∞

B

C

As

5

5
D1

∞

∞

∞

2
2

1

We'll call this
process “edge
relaxation”.

Finding a Shortest Paths Tree Algorithmically
Add all vertices to the fringe.

While fringe is not empty:

 Remove the closest vertex from the fringe and mark it.

 For each outgoing edge v→w: if the edge gives a better distance to w,
 add the edge, and update w in the fringe.

Fringe: [A=0, B=∞, C=∞, D=∞]

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

Key difference from Algorithm #3:
The condition for adding an edge.
(This used to say "if w not in SPT").

Extra bookkeeping: Instead of
adding to the fringe as we go, we'll
add all vertices to start.
This lets us track the best known
distance to each vertex.

Finding a Shortest Paths Tree Algorithmically
Add all vertices to the fringe.

While fringe is not empty:

 Remove the closest vertex from the fringe and mark it.

 For each outgoing edge v→w: if the edge gives a better distance to w,
 add the edge, and update w in the fringe.

Fringe: [A=0, B=∞, C=∞, D=∞]
Removed vertex: A

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

Finding a Shortest Paths Tree Algorithmically
Add all vertices to the fringe.

While fringe is not empty:

 Remove the closest vertex from the fringe and mark it.

 For each outgoing edge v→w: if the edge gives a better distance to w,
 add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=5, D=∞]
Removed vertex: A

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

5

1

Finding a Shortest Paths Tree Algorithmically
Add all vertices to the fringe.

While fringe is not empty:

 Remove the closest vertex from the fringe and mark it.

 For each outgoing edge v→w: if the edge gives a better distance to w,
 add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=5, D=∞]
Removed vertex: C

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

5

1

Finding a Shortest Paths Tree Algorithmically
Add all vertices to the fringe.

While fringe is not empty:

 Remove the closest vertex from the fringe and mark it.

 For each outgoing edge v→w: if the edge gives a better distance to w,
 add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=2, D=6]
Removed vertex: C

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

5

1

6

2
Improvement: We used C→B because
the distance via C→B (2) is better than
the distance via A→B (5).
This also means we throw out the old
edge (A→B) to B.

Finding a Shortest Paths Tree Algorithmically
Add all vertices to the fringe.

While fringe is not empty:

 Remove the closest vertex from the fringe and mark it.

 For each outgoing edge v→w: if the edge gives a better distance to w,
 add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=2, D=6]
Removed vertex: B

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

5

1

6

2

Finding a Shortest Paths Tree Algorithmically
Add all vertices to the fringe.

While fringe is not empty:

 Remove the closest vertex from the fringe and mark it.

 For each outgoing edge v→w: if the edge gives a better distance to w,
 add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=2, D=4]
Removed vertex: B

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

5

1

6

2B→A (total=4) is not better than the
best known way to A (0).

B→D (total=4) is better than the best
known way to D (6, via C→D).
So, we'll update the path to D.

4

Finding a Shortest Paths Tree Algorithmically
Add all vertices to the fringe.

While fringe is not empty:

 Remove the closest vertex from the fringe and mark it.

 For each outgoing edge v→w: if the edge gives a better distance to w,
 add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=2, D=4]
Removed vertex: D

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

5

1

6

2

4

Finding a Shortest Paths Tree Algorithmically
Add all vertices to the fringe.

While fringe is not empty:

 Remove the closest vertex from the fringe and mark it.

 For each outgoing edge v→w: if the edge gives a better distance to w,
 add the edge, and update w in the fringe.

Fringe: [A=0, C=1, B=2, D=4]
Removed vertex: D

No outgoing edges
from D, so do nothing.

∞

B

C

As

5

5
D1

∞

0

∞

2
2

1

5

1

6

2

4

Dijkstra’s Algorithm

Dijkstra’s Demo
Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As
5

2

1

15

3

2
11

5

1

1

4

0

∞
∞

∞

∞

∞

∞

1

Dijkstra’s Demo

B

C

D

E

F

G

As

Node distTo edgeTo
A 0 -
B ∞ -
C ∞ -
D ∞ -
E ∞ -
F ∞ -
G ∞ -

5
2

1

15

3

2
11

5

1

1

Fringe: [(B: ∞), (C: ∞), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]

4

0

∞
∞

∞

∞

∞

∞

1

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A 0 -
B 2 A
C 1 A
D ∞ -
E ∞ -
F ∞ -
G ∞ -

5
2

1

15

3

2
11

5

1

1

Fringe: [(C: 1), (B: 2), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]

4

0

∞
∞

∞

∞

∞

∞

1

2

1

Dijkstra’s Demo
Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A 0 -
B 2 A
C 1 A
D ∞ -
E ∞ -
F ∞ -
G ∞ -

5
2

1

15

3

2
11

5

1

1

Fringe: [(B: 2), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]

4

0

∞

∞

∞

∞

1

2

1

Dijkstra’s Demo
Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A 0 -
B 2 A
C 1 A
D ∞ -
E ∞ -
F 16 C
G ∞ -

5
2

1

15

3

2
11

5

1

1

Fringe: [(B: 2), (F: 16), (D: ∞), (E: ∞), (G: ∞)]

4

0

∞

∞

∞

∞

1

2

16
1

Dijkstra’s Demo
Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A 0 -
B 2 A
C 1 A
D ∞ -
E ∞ -
F 16 C
G ∞ -

5
2

1

15

3

2
11

5

1

1

Fringe: [(F: 16), (D: ∞), (E: ∞), (G: ∞)]

4

0

∞

∞
∞

1

2

16
1

Dijkstra’s Demo
Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A 0 -
B 2 A
C 1 A
D 13 B
E 5 B
F 16 C
G ∞ -

5
2

1

15

3

2
11

5

1

1

Fringe: [(E: 5), (D: 13), (F: 16), (G: ∞)]

4

0

∞

∞
∞

1

2

16

5

13

1

Vertex C unchanged since 2+5 > 1

Which vertex is
removed next?

Dijkstra’s Demo
Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A 0 -
B 2 A
C 1 A
D 13 B
E 5 B
F 16 C
G ∞ -

5
2

1

15

3

2
11

5

1

1

Fringe: [(D: 13), (F: 16), (G: ∞)]

4

0
∞

1

2

16

5

13

1

Dijkstra’s Demo
Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

B

C

D

E

F

G

As

Node distTo edgeTo
A 0 -
B 2 A
C 1 A
D 13 B
E 5 B
F 16 C
G ∞ -

5
2

1

15

3

2
11

5

1

1

Fringe: [(D: 13), (F: 16), (G: ∞)]

4

0
∞

1

2

16

5

13

1

Worksheet time!
Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

• Show distTo, edgeTo, and fringe after relaxation.

B

C

D

E

F

G

As

Node distTo edgeTo
A 0 -
B 2 A
C 1 A
D 13 B
E 5 B
F 9 E
G 10 E

5
2

1

15

3

2
11

5

1

1

Fringe: [(F: 9), (G: 10), (D: 13)]

4

0
∞

1

2

16

5

13

1 9

10

Vertex C unchanged since 5+1 > 1

Worksheet answers
Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Dijkstra’s Demo

B

C

D

E

F

G

As

Node distTo edgeTo
A 0 -
B 2 A
C 1 A
D 13 B
E 5 B
F 9 E
G 10 E

5
2

1

15

3

2
11

5

1

1

Fringe: [(G: 10), (D: 13)]

4

0

1

2

5

13

1

9

10

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Dijkstra’s Demo

B

C

D

E

F

G

As

Node distTo edgeTo
A 0 -
B 2 A
C 1 A
D 11 G
E 5 B
F 9 E
G 10 E

5
2

1

15

3

2
11

5

1

1

Fringe: [(D: 11)]

4

0

1

2

5

13

1

9

10

11

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Dijkstra’s Demo

B

C

D

E

F

G

As

Node distTo edgeTo
A 0 -
B 2 A
C 1 A
D 11 G
E 5 B
F 9 E
G 10 E

5
2

1

15

3

2
11

5

1

1

Fringe: []

4

0

1

2

5

11

1

9

10

Vertex E unchanged since 11 + 2 > 5
Note: If non-negative weights, impossible for any inactive
vertex (white, not on fringe) to be improved!

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Dijkstra’s Demo

B

C

D

E

F

G

As

Node distTo edgeTo
A 0 -
B 2 A
C 1 A
D 11 G
E 5 B
F 9 E
G 10 E

5
2

1

15

3

2
11

5

1

1

Fringe: []

41

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Dijkstra’s Implementation

Dijkstra’s Algorithm Pseudocode

Key invariants:

• edgeTo[v] is the best known predecessor of v.

• distTo[v] is the best known total distance
from source to v.

• PQ contains all unvisited vertices in order of
distTo.

Important properties:

• Always visits vertices in order of total
distance from source.

• Relaxation always fails on edges to already
visited vertices.

Dijkstra’s:
• PQ.add(source, 0)
• For other vertices v, PQ.add(v, infinity)
• While PQ is not empty:

• p = PQ.removeSmallest()
• Relax all edges from p

Relaxing an edge p → q with weight w:
• If distTo[p] + w < distTo[q]:

• distTo[q] = distTo[p] + w
• edgeTo[q] = p
• PQ.changePriority(q, distTo[q])

Dijkstra’s Algorithm Runtime
Priority Queue operation count, assuming min-binary heap based PQ:

• add: max V times, each costing O(log V) time.
• removeSmallest: max V times, each costing O(log V) time.
• changePriority: max E times, each costing O(log V) time.

Overall runtime: O(V*log(V) + V*log(V) + E*logV).

• Assuming E > V, this is just O(E log V) for a connected graph.

Operations Cost per operation Total cost

PQ add V O(log V) O(V log V)

PQ removeSmallest V O(log V) O(V log V)

PQ changePriority E O(log V) O(E log V)

Worksheet time!
• Run Dijkstra’s algorithm to generate the shortest path tree from s below.

Worksheet answers!
• Run Dijkstra’s algorithm to generate the shortest path tree from s below.

• For a full walkthrough, see the slides in the appendix

Lecture 21 wrap-up
• No HW due this week. Last HW 10: On the Road due next Tues 11:59pm

• Final proj part 1 due Fri 11:59pm this week

• Lab this week: Last quiz, last programming lab assignment (a new one on BFS & climate
change), 3-5 minute final project check-ins

Resources
• Recommended Textbook: Chapter 4.4 (Pages 638-676)

• Website: https://algs4.cs.princeton.edu/44sp/

• Visualization: https://visualgo.net/en/sssp

• Practice problems behind this slide

https://algs4.cs.princeton.edu/44sp/
https://visualgo.net/en/sssp

Problem 1
• Run Dijkstra’s algorithm on the following graph with 0 being the starting

vertex.

Answer 1
• Run Dijkstra’s algorithm on the following graph with 0 being the starting

vertex.

v distTo[] edgeTo[]

0 0 -

1 8 0->1

2 12 0->2

3 26 2->3

4 46 3->4

5 34 3->5

6 33 3->6

7 38 3->7

8 42 3->8

Problem 2
Run Dijkstra’s algorithm on the following graph with 0 being the starting
vertex.

0

1 5

7

2 4

3

6

8

5

2

13

3

3

2

6

1

1
2

5

2

6

Answer 2

v distTo[] edgeTo[]

0 0 -

1 6 3->1

2 2 0->2

3 4 2->3

4 5 3->4

5 8 6->5

6 6 4->6

7 11 5->7

0

1 5

7

2 4

3

6

8

5

2

13

3

3

2

6

1

1
2

5

2

6

Problem 3
Dijkstra’s algorithm is guaranteed to be optimal so long as there are no
negative edges. Sketch a proof by induction proving why.

• Hint: The proof relies on the property that relaxation always fails on edges
to visited (white) vertices.

Answer 3
Proof sketch: Assume all edges have non-negative weights.

• At start, distTo[source] = 0, which is optimal.

• After relaxing all edges from source, let vertex v1 be the vertex with minimum
weight, i.e. that is closest to the source. Claim: distTo[v1] is optimal, and thus
future relaxations will fail. Why?

• distTo[p] ≥ distTo[v1] for all p, therefore

• distTo[p] + w ≥ distTo[v1]

• Can use induction to prove that this holds for all vertices after dequeuing.

Worksheet #3 full
walkthrough

TEXT 96

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

2

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

312

20

13

11

9

an edge-weighted digraph

0→1 5.0

0→4 9.0

0→7 8.0

1→2 12.0

1→3 15.0

1→7 4.0

2→3 3.0

2→6 11.0

3→6 9.0

4→5 4.0

4→6 20.0

4→7 5.0

5→2 1.0

5→6 13.0

7→5 6.0

7→2 7.0

TEXT 97

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

3

0

4

7

1 3

5

2

6

choose source vertex 0

v distTo[] edgeTo[]

0 0.0 -

1

2

3

4

5

6

7

TEXT 98

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

4

4

7

1 3

5

2

6

relax all edges adjacent from 0

9

8

5

0

0

∞

∞

∞

v distTo[] edgeTo[]

0 0.0 -

1

2

3

4

5

6

7

TEXT 99

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

∞

Dijkstra's algorithm demo

5

4

7

1 3

5

2

6

relax all edges adjacent from 0

9

8

5

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2

3

4 9.0 0→4

5

6

7 8.0 0→7

0

∞

5

0

∞

8

9

TEXT 100

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

7

0

4

7

1 3

5

2

6

choose vertex 1

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2

3

4 9.0 0→4

5

6

7 8.0 0→7

TEXT 101

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

8

0

4

7

1 3

5

2

6

relax all edges adjacent from 1

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2

3

4 9.0 0→4

5

6

7 8.0 0→7

4

15

12

5

∞

∞

8

TEXT 102

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

9

0

4

7

1 3

5

2

6

relax all edges adjacent from 1

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 17.0 1→2

3 20.0 1→3

4 9.0 0→4

5

6

7 8.0 0→7

4

15

12

✔

∞

∞5

17

20

8

TEXT 103

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

11

0

4

7

1 3

5

2

6

choose vertex 7

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 17.0 1→2

3 20.0 1→3

4 9.0 0→4

5

6

7 8.0 0→7

TEXT 104

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

∞

Dijkstra's algorithm demo

12

0

4

7

1 3

5

2

6

relax all edges adjacent from 7

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 17.0 1→2

3 20.0 1→3

4 9.0 0→4

5

6

7 8.0 0→7

6

7
8

17

TEXT 105

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

13

0

4

7

1 3

5

2

6

relax all edges adjacent from 7

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 15.0 7→2

3 20.0 1→3

4 9.0 0→4

5 14.0 7→5

6

7 8.0 0→7

6

7
8

17

∞ 14

15

TEXT 106

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

15

0

4

7

1 3

5

2

6

select vertex 4

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 15.0 7→2

3 20.0 1→3

4 9.0 0→4

5 14.0 7→5

6

7 8.0 0→7

TEXT 107

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

16

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 15.0 7→2

3 20.0 1→3

4 9.0 0→4

5 14.0 7→5

6

7 8.0 0→7

relax all edges adjacent from 4

4

5

20

8

14

9 ∞

TEXT 108

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

17

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 15.0 7→2

3 20.0 1→3

4 9.0 0→4

5 13.0 4→5

6 29.0 4→6

7 8.0 0→7

relax all edges adjacent from 4

4

5

20

✔

∞ 29

8

14

9

13

TEXT 109

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

19

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 15.0 7→2

3 20.0 1→3

4 9.0 0→4

5 13.0 4→5

6 29.0 4→6

7 8.0 0→7

select vertex 5

TEXT 110

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

20

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 15.0 7→2

3 20.0 1→3

4 9.0 0→4

5 13.0 4→5

6 29.0 4→6

7 8.0 0→7

relax all edges adjacent from 5

1

13

29

13

15

TEXT 111

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

21

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 20.0 1→3

4 9.0 0→4

5 13.0 4→5

6 26.0 5→6

7 8.0 0→7

relax all edges adjacent from 5

1

13

29

13

15 14

26

TEXT 112

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

23

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 20.0 1→3

4 9.0 0→4

5 13.0 4→5

6 26.0 5→6

7 8.0 0→7

select vertex 2

TEXT 113

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

24

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 20.0 1→3

4 9.0 0→4

5 13.0 4→5

6 26.0 5→6

7 8.0 0→7

relax all edges adjacent from 2

3

11

26

14

20

TEXT 114

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

25

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

relax all edges adjacent from 2

3

11

26

14

20 17

25

TEXT 115

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

27

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

select vertex 3

TEXT 116

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

28

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

relax all edges adjacent from 3

9

3

25

2017

TEXT 117

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

29

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

relax all edges adjacent from 3

9

✔

3

25

2017

TEXT 118

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

31

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

select vertex 6

TEXT 119

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

32

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

relax all edges adjacent from 6

TEXT 120

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

34

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

shortest-paths tree from vertex s

s

