CS62 Class 23: Shortest paths

== T Nl A Nl BER RN NS

© Santa Rosa

Stanislaus

o National Forest ~ o>-1ONC
L ! o Stockton | Yosemite | _
San Francisco ¢ — ~ National Park ™,
3 ‘0 Modesto B cMInCH.
E A Lakes '

Sierra National

Forest | . |
>Monterey y.
| CALIFORNIA Deathjye |
0-Visalia
9 Tulare |
~ . Sequoia 2

National Forest

s Ridgecrest
o Bakersfield S

Y

ovSagta Barbara a'\Santa Clari

&=} 6 hr 48 min
409 miles

JSan Luis
Obispo
‘“Los Padres
National Forest

&= 6 hr 45 min |
409 miles

Agenda

» Last time: BFS on directed graphs, strongly connected digram algorithm
+ Edge-weighted graphs

» Shortest paths

» Dijkstra’s algorithm

Last time: Depth first search vs Breadth first search

- Depth first search uses recursion to go “deep” into the
graph (fully follow one node before popping up the
recursive stack and going deep into another node).

- Breadth first search uses a queue to first visit all
nodes that are 1 away, then 2 away, etc...

A l g OrI1l th IMS ROBERT SEDGEWICK | KEVIN WAYNE

4.2 DIRECTED BFS DEMO

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Order visited: 0, 2, 1,4, 3,5

Worksheet time!

 Given the following adjacency list, visualize the resulting digraph and run BFS on it
starting at vertex 0. In what order did you visit the vertices? Is every vertex reachable
from 07

0 —521-}41&

1 —)21-{»51-{»61'\

Worksheet answer *

 Given the following adjacency list, visualize the
resulting digraph and run BFS on it starting at vertex
0. In what order did you visit the vertices?

« 0,2,4,5,7,6 No, we never reach 1 or 3 from O

Vv marked edgeTo distTo
0 T 0
°) 1 F
2 T 0 1
3 F
o o 4 0 1
5 2 2
6 7 3
. / 4 2

BFS/DFS space efficiency

Both DFS and BFS run in O(V+E), but use O(V) space to keep track of the vertices in
the recursive call (DFS) or queue (BFS).

Give an example of a graph that would make the space efficiency bad for DFS or BFS.

Problem | Problem Description Solution Efficiency (adj. list)

s-t paths Find a path from s to every DFS O(V+E) time
reachable vertex. O(V) space

s-t shortest | Find a shortest path from s BFS |

paths to every reachable vertex. O(V+E) time

©(V) space

BFS vs. DFS for space efficiency

» DFS is worse for spindly graphs.
» Call stack gets very deep.
« Computer needs O(V) memory to remember recursive calls.
°* BFSis worse for absurdly “bushy” graphs.
* Queue gets very large. In worst case, queue will require O(V) memory.
- Example: 1,000,000 vertices that are all connected. 999,999 will be enqueued at
once.
» Note: In our implementations, we have to spend O(V) memory anyway to track
distTo and edgeTo arrays.
» Can optimize by storing distTo and edgeTo in a map instead of an array.

Strongly connected digraph algorithm

A is a directed graph in which it is possible to reach any
vertex starting from any other vertex by traversing edges.

* Pick a random starting vertex s.

* Run DFS/BFS starting at s. } 1
* |f have not reached all vertices, return false. % @ %‘l@
q‘_.___ﬂ-”

* Reverse edges.

Strongly connected Not sirongly connected

» Run DFS/BFS again on reversed graph.
 |f have not reached all vertices, return false.

* Else return true.

Edge-weighted graph

Edge-weighted graphs

» Edge-weighted digraph: a digraph where BEPS-Waighted (igraph

. . . 4->5 0.35
we associate weights/costs with each edge. 5-34 0.35 (D
4->7 0.37 (5)
5->7 0.28 “— :)
7->5 0.28 (:)"'
5->1 0.32 0)
0->4 0.38
0-»2 0.26
;")g g gg shortest path from0to 6
- .

2->7 0.34 gjzi g‘ig
6->2 0.40 7->3 0.39
3"’>6 O.SZ 3"’)6 0 52
b->0 0.58 '
6->4 0.93

Weighted directed edge API

® public class DirectedEdge only difference is we now have weights

® DirectedEdge(int v, int w, double weight)
> Constructs a weighted edge from vtow (v->w) with the provided weight.
e 1nt from()
> Returns vertex source of this edge.
e 1nt to()
> Returns vertex destination of this edge.
® double weight()

> Returns weight of this edge.
® String toString()

> Returns the string representation of this edge.

Weighted directed edge in Java

public class DirectedEdge {
private final int v;
private final int w;
private final double weight;

public DirectedEdge(int v, int w, double weight) {
this.v = v;
this.w = w;
this.weight = weight;
}

public int from() {
return v;

}

public int to() {
return w;

}

public double weight() {
return weight;

}

Edge-weighted digraph API

® public class EdgeWeightedDigraph only difference is edges are DirectedEdge
® EdgeWeightedDigraph(int v) objects instead of integers

> Constructs an edge-weighted digraph with v vertices.
® void addEdge(DirectedEdge e)

~ Add weighted directed edge e.
® Tterable<DirectedEdge> adj(int v)
 Returns edges adjacent from v.
o 1nt V()
 Returns number of vertices.
o int EC)
 Returns number of edges.
® Tterable<DirectedEdge> edges()

 Returns all edges.

Edge-weighted digraph adjacency list representation

® public class EdgeWeightedDigraph
® EdgeWeightedDigraph(int v)

» Constructs an edge-weighted digraph e
with V vertices. be < F
® void addEdge(DirectedEdge e) :i 8§§
4 7 0.37
» Add weighted directed edge e. S 7 0.28
75 0.28
® Tterable<DirectedEdge> adj(int v) 31 8§§
4 0.
 Returns edges adjacent from v. -
: 13 0.29
®int VO 2 7 0.34
62 0.40
« Returns number of vertices. 36 0,22
, 60 0.58
e 1nt EC 6 4 0.93

» Returns number of edges.

® Tterable<DirectedEdge> edges()

 Returns all edges.

ad] f‘/A

. ~

-~ O w > w N = O

Y7/l

~l0]2[.26— .38

~[1]3[.29]

~2[7].34

~3]|6]|.52 reference to a
‘ DiFCC}pCLCgC

~4]7].37 .35 l

~[5[1f.32}—~ .28 —{5]4].35]

~6/4/[.93} .584—*.6[2_.40”

~7]3][.39 .28

Edge-weighted digraph representation

Edge-weighted digraph in Java

public class EdgeWeightedDigraph {
private final int V; // number of vertices in this digraph
private int E; // number of edges in this digraph
private SinglyLinkedList<DirectedEdge> adj[];
// adj[v] = adjacency list for v

public EdgeWeightedDigraph(int V) {
this.V = V;
this.E = 0;
adj] = new SinglyLinkedList<DirectedEdge>[V];
for (int v = 0; v < V; v++) , , ,
adj[v] = new SinglyLinkedList<DirectedEdge>(); Llrectedkbdge instead ofint
}
public void addEdge(DirectedEdge e) {
int v = e.from();

int w = e.to(); extract v & w with .from() and .to() getters
adj[v].add(e);
E++;

}

public Iterable<DirectedEdge> adj(int v) {
return adj[v];

}

Shortest paths

BreadthFirstSearch for Google Maps

BFS would not be a good choice for a Google Maps style navigation application.

» The problem: BFS returns path with shortest number of edges, not necessarily
the shortest path.

» That's why we need an edge-weighted graph.

=

[

40

4
Goal: go from s

(green) to t (red)

BFS answer

260

/0

/0

Correct shortest path

/0

Shortest Path variants

Single source: from one vertex s to every other vertex.
Single sink: from every vertex to one vertex t.
Source-sink: from one vertex s to another vertex t.

All pairs: from every vertex to every other vertex.

What version is there in Google Maps?

Shortest Paths Assumptions

 Not all vertices need to be reachable.

» We will assume so in this lecture.

» Weights are non-negative.

» There are algorithms that can handle negative weights.

 Shortest paths are not necessarily unique but they are simple.

Worksheet time!

Find the shortest paths from source vertex s to every other vertex. (Single source shortest path)

What data structure does your path look like?

How many edges, as a function of V, are in it? A\

What algorithm did you as a human come up with?

Worksheet answers

Find the shortest paths from source vertex s to every other vertex. (Single source shortest path)

What data structure does your path look like? A tree

How many edges, as a function of V, are in it? E =V-1 (7 vertices, 6 edges)

SPT Edge Count

If G is a connected edge-weighted graph with V vertices and E edges, there are
exactly V-7 edges are in the Shortest Paths Tree (SPT) of G, assuming every vertex is
reachable.

Dijkstra’s Algorithm
(bad examples)

Creating an Algorithm

Let's create an algorithm for finding the shortest paths.
Will start with a bad algorithm and then successively improve it.

» Algorithm begins in state below. All vertices unmarked. All distances infinite. No
edges in the SPT.

Bad Algorithm #1 (Inspired by BFS)

Add the start (A) to the fringe.

While fringe is not empty:
Remove a vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,
add the edge, and add w to fringe.

P
S 2 |
2 G

Bad Algorithm #1 (Inspired by BFS)

Add the start (A) to the fringe.

While fringe is not empty:
Remove a vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,
add the edge, and add w to fringe.

5 2\
[af— 7 |1
| S/IE
Fringe: [A] T~

Bad Algorithm #1 (Inspired by BFS)

Add the start (A) to the fringe.

While fringe is not empty:
Remove a vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,
add the edge, and add w to fringe.

5 2
s / 2 |
R L
Fringe: [A] \

Removed vertex: A

Bad Algorithm #1 (Inspired by BFS)

Add the start (A) to the fringe.

While fringe is not empty:
Remove a vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,
add the edge, and add w to fringe.

Fringe: [A, B, C] \ﬁ/

Removed vertex: A

Bad Algorithm #1 (Inspired by BFS)

Add the start (A) to the fringe.

While fringe is not empty:
Remove a vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,
add the edge, and add w to fringe.

Fringe: | C] \ﬁ/

Removed vertex: B

Bad Algorithm #1 (Inspired by BFS)

Add the start (A) to the fringe.

While fringe is not empty:
Remove a vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,
add the edge, and add w to fringe.

A
The edge B—A is not
: added to SPT,
Fringe: | C, D}

because A is already
Removed vertex: B part of the SPT.

Bad Algorithm #1 (Inspired by BFS)

Add the start (A) to the fringe.

While fringe is not empty:
Remove a vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,
add the edge, and add w to fringe.

Fringe: [\ﬁ/

Removed vertex C

Bad Algorithm #1 (Inspired by BFS)

Add the start (A) to the fringe.
While fringe is not empty:
Remove a vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,
add the edge, and add w to fringe.

Nothing happens.
C—B not added, B

_/
already in SPT.
Fringe: | C—D not added, D

Removed vertex C already in SPT.

Bad Algorithm #1 (Inspired by BFS)

Add the start (A) to the fringe.

While fringe is not empty:
Remove a vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,
add the edge, and add w to fringe.

Fringe: [\ﬁ/

Removed vertex: D

Bad Algorithm #1 (Inspired by BFS)

Add the start (A) to the fringe.

While fringe is not empty:
Remove a vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,
add the edge, and add w to fringe.

Nothing happens.

D has no neighbors
Fringe: [(there are no edges
going out of D).

Removed vertex: D

Bad Algorithm #1 (Inspired by BFS)

Add the start (A) to the fringe.

While fringe is not empty:
Remove a vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,
add the edge, and add w to fringe.

Takeaways:

Algorithm #1 (BFS) visits:

every node |1 edge away,
then every node|2 edges away,
then every node|3 edges away, etc.

* This algorithm would work if all our edges were the same length.

Bad Algorithm #2 (Dummy Nodes)

Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every
unit along an edge, then run breadth-first search.

* When we hit one of our original nodes, add edge to the SPT.

Order of visited nodes:

Bad Algorithm #2 (Dummy Nodes)

Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every
unit along an edge, then run breadth-first search.

* When we hit one of our original nodes, add edge to the SPT.

Order of visited nodes: A

Bad Algorithm #2 (Dummy Nodes)

Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every
unit along an edge, then run breadth-first search.

* When we hit one of our original nodes, add edge to the SPT.

Order of visited nodes: AC

Bad Algorithm #2 (Dummy Nodes)

Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every
unit along an edge, then run breadth-first search.

* When we hit one of our original nodes, add edge to the SPT.

Order of visited nodes: ACB

Bad Algorithm #2 (Dummy Nodes)

Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every
unit along an edge, then run breadth-first search.

* When we hit one of our original nodes, add edge to the SPT.

Order of visited nodes: ACB

Bad Algorithm #2 (Dummy Nodes)

Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every
unit along an edge, then run breadth-first search.

* When we hit one of our original nodes, add edge to the SPT.

Order of visited nodes: ACBD

Bad Algorithm #2 (Dummy Nodes)

Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every
unit along an edge, then run breadth-first search.

* When we hit one of our original nodes, add edge to the SPT.

Order of visited nodes: ACBD

Bad Algorithm #2 (Dummy Nodes)

Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every
unit along an edge, then run breadth-first search.

Takeaways:

* |t works, but can be really slow. For example, consider the graph below.
+ What if we measured in inches instead of miles? Or had fractional weights?

316800 ! | 126720

126720 ™~
S — 63360 EI

—
63360 316800
T

Bad Algorithm #2 (Dummy Nodes)

Bad algorithm #2: Create a new graph by adding a bunch of dummy nodes every
unit along an edge, then run breadth-first search.

Takeaways:
Algorithm #1 (BFS) visits: Algorithm #2 (dummy nodes) visits:
every node|1 edge away, every node|distance 1 away,
then every node|2 edges away, then every node distance 2 away,
then every node|3 edges away, etc. then every node distance 3 away, etc.

» Algorithm #2 order is sometimes called best-first order.
» Let's try to visit the nodes in the same order as Algorithm #2 did, but without
creating dummy nodes.

Bad Algorithm #3 (Best-First Search)

Bad algorithm #3: Perform best-first search.

 Similar to BFS, but we remove the closest edge from the fringe each time.
* We can use a priority queue to track the closest edge.

Bad Algorithm #3 (Best-First Search)

Add the start (A) to the fringe. Only difference from Algorithm #1:

, , , We added the word "closest".
While fringe is not empty:

Remove the closest vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,
add the edge, and add w to fringe.

Fringe: [A=0] 1 \

Bad Algorithm #3 (Best-First Search)

Add the start (A) to the fringe.
While fringe is not empty:
Remove the closest vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,
add the edge, and add w to fringe.

Fringe: [A=0] 1 \

Removed vertex: A

Bad Algorithm #3 (Best-First Search)

Add the start (A) to the fringe.
While fringe is not empty:
Remove the closest vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,
add the edge, and add w to fringe.

B

Fringe: | C=1, B=5]
Removed vertex: A

Bad Algorithm #3 (Best-First Search)

Add the start (A) to the fringe.
While fringe is not empty:
Remove the closest vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,

add the edge, and add w to fringe.
SC
In BFS, we removed B
here, but in best-first,
we're removing C
because it's closer.

B
. |
s 2 1
Fringe: | B=5] 1
K

Removed vertex: C

2

\
5/11|

Bad Algorithm #3 (Best-First Search)

Add the start (A) to the fringe.
While fringe is not empty:
Remove the closest vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,

add the edge, and add w to fringe. «
5 5
It
Fringe: [B=5, D=6] ! >
Q

Removed vertex: C

®

Bad Algorithm #3 (Best-First Search)

Add the start (A) to the fringe.
While fringe is not empty:
Remove the closest vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,
add the edge, and add w to fringe.

SC
B
; 2 x
s[Al—2 1] D
(1\ﬁ/5
6] C
oQ

Fringe: | D
Removed vertex: B

C

Bad Algorithm #3 (Best-First Search)

Add the start (A) to the fringe.
While fringe is not empty:
Remove the closest vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,
add the edge, and add w to fringe.

SQ
The only outgoing edge
is B—D. : 5
D is already part of the
SPT, so do nothing. . 5 ‘1 \
. 1 5
Fringe: | D=6]
Removed vertex: B e

®

Bad Algorithm #3 (Best-First Search)

Add the start (A) to the fringe.
While fringe is not empty:
Remove the closest vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,

add the edge, and add w to fringe.
%ﬂ :
° |
¢
InSoE
'~
C
oQ

Fringe: [] C
Removed vertex: D

Bad Algorithm #3 (Best-First Search)

Add the start (A) to the fringe.
While fringe is not empty:
Remove the closest vertex from the fringe and mark it.

For each outgoing edge v—w: if w is not already part of SPT,
add the edge, and add w to fringe.

No outgoing edges
from D, so do nothing.

5 2
\\
s[Al—2>] D
| (1\‘ﬁ/5
Fringe: |] C
G

C
Removed vertex: D

Bad Algorithm #3 (Best-First Search)

Bad algorithm #3: Perform best-first search.

 Similar to BFS, but we remove the closest edge from the fringe each time.
- We can use a priority queue to track the closest edge.

Takeaways:

* Pro: We visited the nodes in best-first order (same order as in Algorithm #

without creating dummy nodes.
» Con: We got the wrong answer. Why?
» Let's revisit the step where things went wrong.

2),

Bad Algorithm #3 (Best-First Search)

-or each outgoing edge v—w:. if w is not already part of SPT, add the edge,
mark w, and add w to fringe.

edge: B was in the SPT (via A—B), so we did nothing.

What should we have done here?

» We should have added edge , and thrown
out the old edge (A—B) to B. Why?

S
* The distance to B via s 2. E
5

This is better than the currently best known y) \ X

distance to B (5, via A—B). > — 1
1 5

Fringe: [B=5, D=6]

Removed vertex: C oCQ

Finding a Shortest Paths Tree Algorithmically

Dijkstra's Algorithm:

 So far, we've added an edge v—w if w is not already part of the SPT.
» Instead, we should add an edge if that edge yields better distance.
 Use the priority queue to track best known distances.
PHOTEY 8 \ We'll call this

process “edge
relaxation”.

Finding a Shortest Paths Tree Algorithmically

Key difference from Algorithm #3:
The condition for adding an edge.

While fringe is not empty: (This used to say "if w not in SPT").

Remove the closest vertex from the fringe and mark it. /

For each outgoing edge v—=w/ if the edge gives a better distance to w,
add the edge, and update w in the fringe.

Extra bookkeeping: Instead of E
adding to the fringe as we go, we'll /
add all vertices to start. O J\ 2 \
/ This lets us track the best known ¢ 2 1 EI
distance to each vertex.
1 5—

Add all vertices to the fringe.

Fringe: [A=0, B=0o, C=00, D=00] T

Finding a Shortest Paths Tree Algorithmically

Add all vertices to the fringe.
While fringe is not empty:
Remove the closest vertex from the fringe and mark it.

For each outgoing edge v—w: if the edge gives a better distance to w,

add the edge, and update w in the fringe.
(A2] o
. 1 5—
Fringe: [~A=0, B=0o, C=00, D=00]} \

Removed vertex: A

Finding a Shortest Paths Tree Algorithmically

Add all vertices to the fringe.
While fringe is not empty:
Remove the closest vertex from the fringe and mark it.

For each outgoing edge v—w: if the edge gives a better distance to w,

add the edge, and update w in the fringe.
SC

B ,
: |
. 2 : \EI
1 5—
Fringe: [A=0, C=1, B=5, D=00]
oQ

Removed vertex: A

Finding a Shortest Paths Tree Algorithmically

Add all vertices to the fringe.
While fringe is not empty:
Remove the closest vertex from the fringe and mark it.

For each outgoing edge v—w: if the edge gives a better distance to w,

add the edge, and update w in the fringe.
SC

B
° |
s 2 1
Fringe: | B=5, D=00] 1
oQ

2
\
S/EI

Removed vertex: C

Finding a Shortest Paths Tree Algorithmically

Add all vertices to the fringe.
While fringe is not empty:
Remove the closest vertex from the fringe and mark it.

For each outgoing edge v—w: if the edge gives a better distance to w,
add the edge, and update w in the fringe.

SC ™\
Improvement: We used C—B because E
the distance via C—B (2) is better than / 9
the distance via A—B (5). S | \ <
This also means we throw out the old)
edge (A—B) to B. > 1
1 5
B=2, D=6} C

Fringe: | C
Removed vertex: C e

Finding a Shortest Paths Tree Algorithmically

Add all vertices to the fringe.
While fringe is not empty:
Remove the closest vertex from the fringe and mark it.

For each outgoing edge v—w: if the edge gives a better distance to w,

add the edge, and update w in the fringe.
SC S
2]
1
Fringe: | D=6] .
Removed vertex: B \

Finding a Shortest Paths Tree Algorithmically

Add all vertices to the fringe.
While fringe is not empty:
Remove the closest vertex from the fringe and mark it.

For each outgoing edge v—w: if the edge gives a better distance to w,
add the edge, and update w in the fringe.

B— A (total=4) is not better than the

best known way to A (0).
5 2
B—D (total=4) is better than the best ’) I C S
known way to D (6, via C—D). S — l
So, we'll update the path to D.
o, we'll update the path to 1 5/

Fringe: | D=4]

o8

Removed vertex: B

Finding a Shortest Paths Tree Algorithmically

Add all vertices to the fringe.
While fringe is not empty:
Remove the closest vertex from the fringe and mark it.

For each outgoing edge v—w: if the edge gives a better distance to w,
add the edge, and update w in the fringe.

Removed vertex: D

| 1 5—
Fringe: |]
G

Finding a Shortest Paths Tree Algorithmically

Add all vertices to the fringe.
While fringe is not empty:
Remove the closest vertex from the fringe and mark it.

For each outgoing edge v—w: if the edge gives a better distance to w,
add the edge, and update w in the fringe.

No outgoing edges / E

from D, so do nothing. 5 | 2

| 1 5
Fringe: |]
G

Removed vertex: D

Dijkstra’s Algorithm

Dijkstra’s Demo

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

. 11 N \ 1
/‘ |)
o

o [A

2
1

SN~ —

Dijkstra’s Demo

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node distTo edgeTo °0 11 °°I v\
0 - 2 !
- " | 3 |
_ 0 5
1 I 1

TS
- \A

Q19 HO0OOQWP

8 8 8 8 8 8

L iy

Fringe: [(B: ®), (C: ®), (D:), (E: o), (F: o), (G:)]

Dijkstra’s Demo

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node distTo edgeTo > s 1 °°I v\ 1
o~ ;
_ S I5 1

2 3
0
1 1
- \\\A

Q19 HO0OOQWP

8 8 8 8

e

Fringe: [(C: 1), (B:

2), (D: ®©), (E: o), (F: o), (G:)]

Dijkstra’s Demo

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

o]

Node distTo edgeTo 1 I v\ 1
: z
A 2 - , 3 ~—_ I
5 ‘ 5
1 I 1

e

‘ S,

Q9 MHOOQmP
8 8 8 8 m IO

T
4/-l>’.

Fringe: [(B: 2), (D:), (E: o), (F: o), (G:)]

Dijkstra’s Demo

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.
e A(
Node distTo edgeTo 2 11 I \\\\ 1
: B
| 3 | -
0 5
1 I 1 1

o [A
N
o

Q19 HO0OOQWP

|@||:w:>|

2
1
00
00
@
00

Fringe: [(B: 2),| (F: 16) (D: ©), (E: o), (G:)]

Dijkstra’s Demo

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

— s

Node distTo edgeTo 11 I \\\\
1

: 2 N 2
B
c 1] e
D 00 5/'
E 00
F
G

\
: : TE
@ |
16 C 1 ! 1 4
\

. S,

Dijkstra’s Demo

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node distTo edgeTo 2 13 I v\
g 2
@ /' , I 5 00

16
00

Q19 HO0OOQWP

(0
>e
G

Vertex C unchanged since 2+5 > 1

Fringe: [(E: 5), (D: 13), (F: 16), (G:)] Which vertex is

removed next?

Dijkstra’s Demo

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

_~D

iode dis’;To edc;:jeTo 11 2’ '\ ,

B 2 A

C 1 A 2 -~ , 3 N 1
N 3 5 5 A 5)

" : S /-/ V4

F 16 C 1 I 1 ‘ 1

G 00 = :

\ 4 /
\
e

Fringe: [(D: 13), (F: 16), (G:)]

Worksheet time!

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

» Show distTo, edgeTo, and fringe after relaxation. EI

7,
Node distTo edgeTo 2 11 13’ \\\\
o 2
B 2 A /' I .
C L A 2 | N 5
D 13 B 0 5 A 5—"
o 5 B S /-/ /
F 16 C 1 ’ 1 1) 1
G 00 - -

4
\/ 15 . 1‘5/

Fringe: [(D: 13), (F: 16), (G:)]

Worksheet answers

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

_~D]|

Node dis’gTo edc__:jeTO 132I \ 1
2 /
el e

L ~ L
/

3 E S ’5
H G "~ |

15
Vertex C unchanged since 5+1 > 1
Fringe: [[(F: 9), (G: 10),| (D: 13)]

5

Q19 HO0OOQWP

Dijkstra’s Demo

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

1

Node distTo edgeTo 1 I v\ 1
™ 2
- |
5

Q19 HO0OOQWP

A

A |
13 B : 5 W
5 B S| A
9 E - 1 I 1) 1/
10 E M

Fringe: [(G: 10), (D: 13)]

Dijkstra’s Demo

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node distTo edgeTo R \I \ 1
S 2
- |
5

AHMHEHUOAQED
mw@ N
o w(Q)p >
(dp)
E
—
— g —
—*ﬂ

Dijkstra’s Demo

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node

Q19 HO0OOQWP

distTo

0
2
1
11
5
9
10

edgeTo

HH o

Fringe:

[]

Vertex E unchanged since 11 +2 > 5
Note: If non-negative weights, impossible for any inactive

vertex (white, not on fringe) to be improved!

Dijkstra’s Demo

Insert all vertices into fringe PQ (priority queue), storing vertices in order of distance from source.

Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.

Node distTo edgeTo
o z
S - f/, '~
D 11 G 5 A o=
E 5 B s| A /
F 9 E 1\’ 1 . 1
G 10 E .
o, VS

Fringe: []

Dijkstra’s Implementation

Dijkstra’s Algorithm Pseudocode

Dijkstra’s:
* PQ.add(source, 0)
* For other vertices v, PQ.add(v, infinity)
* While PQ is not empty:
* p=PQ.removeSmallest()

* Relax all edges from p

Relaxing an edge p — q with weight w:

* It distTo[p] + w < distTo[q]:
° distTo[q] = distTo[p] + w
* edgeTo[q] =p
* PQ.changePriority(q, distTo[q])

Key invariants:

+ edgeTol[v] is the best known predecessor of v.

« distTo[v] is the best known total distance

from source to v.

» PQ contains all unvisited vertices in order of

distTo.

Important properties:

» Always visits vertices in order of total

distance from source.

 Relaxation always fails on edges to already

visited vertices.

Dijkstra’s Algorithm Runtime

Priority Queue operation count, assuming min-binary heap based PQ:

» add: max V times, each costing O(log V) time.
* removeSmallest: max V times, each costing O(log V) time.
» changePriority: max E times, each costing O(log V) time.

Overall runtime: O(V*log(V) + V*log(V) + E*logV).
» Assuming E >V, this is just O(E log V) for a connected graph.

Operations | Cost per operation Total cost

PQ add V O(log V) O(V log V)
PQ removeSmallest V O(log V) O(V log V)

PQ changePriority E O(log V) O(E log V)

Worksheet time!

* Run Dijkstra’s algorithm to generate the shortest path tree from s below.

Worksheet answers!

* Run Dijkstra’s algorithm to generate the shortest path tree from s below.

 For a full walkthrough, see the slides in the appendix

) (2)

v distTo[] edgeTol[]
0 0.0 -
: 1 5.0 0—1
2 14.0 5—2
@ 3 17.0 2—3
4 9.0 0—4
5 13.0 4—5
6 25.0 2—6
C/ 7 8.0 0—7
®

shortest-paths tree from vertex s

Lecture 21 wrap-up

* No HW due this week. Last HW 10: On the Road due next Tues 11:59pm
* Final proj part 1 due Fri 11:59pm this week

» Lab this week: Last quiz, last programming lab assignment (a new one on BFS & climate
change), 3-5 minute final project check-ins

Resources

Recommended Textbook: Chapter 4.4 (Pages 638-676)
« Website:

* Visualization:

* Practice problems behind this slide

https://algs4.cs.princeton.edu/44sp/
https://visualgo.net/en/sssp

Problem 1

» Run Dijkstra’s algorithm on the following graph with 0 being the starting
vertex.

Answer 1

* Run Dijkstra’s algorithm on the following graph with O being the starting
vertex.

\Y; distTo[] edgeTo[]
0 0
21 1 8 0->1
sourge, 0 12 3 5 15 0.52
8 12 3 26 2->3
8 4 46 3->4
5 34 3->5
20 6 33 3->6
46 34 7 38 3->7
8 42 3->8

Problem 2

Run Dijkstra’s algorithm on the following graph with 0 being the starting
vertex.

Answer 2

13
> v distTo[] edgeTo[]
3
2 0 0 -

6 7
5 1 6 3->1
3 6 2 2 0->2
3 4 2->3

2 6
2 4 5 3->4
Q 1 5 8 6->5
> 6 6 4->6
7/ 11 5->7

Problem 3

Dijkstra’s algorithm is guaranteed to be optimal so long as there are no
negative edges. Sketch a proof by induction proving why.

 Hint: The proof relies on the property that relaxation always fails on edges
to visited (white) vertices.

Answer 3

Proof sketch: Assume all edges have non-negative weights.
At start, distTo[source] = 0, which is optimal.

» After relaxing all edges from source, let vertex v1 be the vertex with minimum
weight, i.e. that is closest to the source. Claim: distTo[v1] is optimal, and thus
future relaxations will fail. Why?

» distTol[p] > distTo[v1] for all p, therefore
» distTo[p] + w > distTo[v1]

 Can use induction to prove that this holds for all vertices after dequeuing.

Worksheet #3 full
walkthrough

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s
(non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

/ 0—4 9.
> A / 0—-7 8.
12 3
S K l 1-2 12.
8 \ 1-3 15.

11.

20.

v \ 4—6

¥ 20 »@ 47 5
5—2 1.
5—6 13.

an edge-weighted digraph 7.5

O
N/
\ /?
;:/

\I
A//@
N W NN R
IR
U1 OO O W

(o) w BH
O O O O O O O O O O O O O O O o

0—=1 5.0
0-—=4 9.0
Dijkstra's algorithm demo e Gl
1-=2 12.0
1-3 15.0
17 4.0
2—=3 3.0

- Consider vertices in increasing order of distance from s 26 11.0

3-6 9.0

(non-tree vertex with the lowest distTo[] value). 4=5 4.0

4—-6 20.0

- Add vertex to tree and relax all edges adjacent from that vertex. 4>7 5.0

5-=2 1.0
5—=6 13.0
7-=5 6.0

C\ 7—2 7.0
> distTo[] edgeTol]

— 0.0 -
\ 4
/

@A 0

choose source vertex 0

v
N OO 1 AW NN RO L

0-=1 5.0

04 9.0
Dijkstra's algorithm demo 07 8
1-3 15.0
17 4.0
. 2—3 3.0
- Consider vertices in increasing order of distance from s 26 11.0
36 9.0
(non-tree vertex with the lowest distTo[] value). 4=5 4.0
4—-6 20.0
- Add vertex to tree and relax all edges adjacent from that vertex. o7 s
00 5—-6 13.0
75 6.0
- 7—2 7.0
- > distTo[] edgeTo[]
0 5 — 0.0 =
3 Y o0
\ 7
>

N OO 1 AW NN RO L

|

o0

relax all edges adjacent from O

0—=1 5.0
0-—=4 9.0
Dijkstra's algorithm demo e Gl
1-=2 12.0
1-3 15.0
17 4.0
2—=3 3.0

- Consider vertices in increasing order of distance from s 26 11.0

3-6 9.0

(non-tree vertex with the lowest distTo[] value). 4=5 4.0

4—-6 20.0

- Add vertex to tree and relax all edges adjacent from that vertex. 4>7 5.0

5-=2 1.0
5—=6 13.0
7-=5 6.0
7—=2 7.0

> distTo[] edgeTol]
0.0 _
0—1

N OO 1 AW NN RO L

o
|
AN

0—7

3

relax all edges adjacent from O

0—=1 5.0
0-—=4 9.0
Dijkstra's algorithm demo e Gl
1-=2 12.0
1-3 15.0
17 4.0
2—=3 3.0

- Consider vertices in increasing order of distance from s 26 11.0

3-6 9.0

(non-tree vertex with the lowest distTo[] value). 4=5 4.0

4—-6 20.0

- Add vertex to tree and relax all edges adjacent from that vertex. 4>7 5.0

5-=2 1.0
5—=6 13.0
7-=5 6.0
7—=2 7.0

> distTo[] edgeTol]

0.0 -
©) -

5.0 0—1

9.0 0—4

N OO 1 AW NN RO L

8.0 0—7

choose vertex 1

0—=1
0—4

Dijkstra's algorithm demo >
L
- Consider vertices in increasing order of distance from s e
(non-tree vertex with the lowest distTo[] value). s
- Add vertex to tree and relax all edges adjacent from that vertex. ;:z
: 0 =
15— . =
v distTo[] edgeTol]
4 0 0.0 -
@ l 12 — 1 5.0 0-1
8 \ 2
/ > 00 3
4 9.0 0—4
5
6
7 8.0 0—7
; 0

relax all edges adjacent from 1

5.0
9.0
8.0
12.0
15.0
4.0
3.0
11.0
9.0
4.0
20.0
5.0
1.0
13.0
6.0
7.0

0-=1 5.0
0-=4 9.0
0—=7 8.0
1-2 12.0
1-3 15.0
1-7 4.0
2—=3 3.0

- Consider vertices in increasing order of distance from s 26 11.0

3-6 9.0

(non-tree vertex with the lowest distTo[] value). 4=5 4.0

4—-6 20.0

- Add vertex to tree and relax all edges adjacent from that vertex. 4>7 5.0

5-=2 1.0

5—=6 13.0
20 7-5 6.0

Dijkstra's algorithm demo

5 -00-

7—=2 7.0

_ :
1> distTo[] edgeTo[]

0.0 =
5.0 0—1

12

9.0 0—4

N OO 1 AW NN RO L

8.0 vV 0—7

relax all edges adjacent from 1

0-=1 5.0
0-=4 9.0
0—=7 8.0
1-2 12.0
1-3 15.0
1-7 4.0
2—=3 3.0

- Consider vertices in increasing order of distance from s 26 11.0

3-6 9.0

(non-tree vertex with the lowest distTo[] value). 4=5 4.0

4—-6 20.0

- Add vertex to tree and relax all edges adjacent from that vertex. 4>7 5.0

5-=2 1.0
5—=6 13.0
7-=5 6.0

@ 7—=2 7.0
distTo[] edgeTol[]

0.0 -

5.0 0—1
17.0 12
20.0 1—3
9.0 0—4

Dijkstra's algorithm demo

©)

8.0 0—7

v
NN O L1 A WNN R O L

©

choose vertex 7

11

0-=1 5.0
0-=4 9.0
0—=7 8.0
1-2 12.0
1-3 15.0
1-7 4.0
2—=3 3.0

- Consider vertices in increasing order of distance from s 26 11.0

3-6 9.0

(non-tree vertex with the lowest distTo[] value). 4=5 4.0

4—-6 20.0

- Add vertex to tree and relax all edges adjacent from that vertex. 4>7 5.0

5-=2 1.0
5—=6 13.0
/-5 6.0

@ 7-2 7.0
distTo[] edgeTol[]

0.0 =

5.0 0—1
17.0 12
20.0 1—3
9.0 0—4

Dijkstra's algorithm demo

NN O L1 A WNN R O L

8.0 0—7

:
|

relax all edges adjacent from 7

12

0-=1 5.0
0-=4 9.0
0—=7 8.0
1-2 12.0
1-3 15.0
1-7 4.0
2—=3 3.0

- Consider vertices in increasing order of distance from s 26 11.0

3-6 9.0

(non-tree vertex with the lowest distTo[] value). 4=5 4.0

4—-6 20.0

- Add vertex to tree and relax all edges adjacent from that vertex. 4>7 5.0

5-=2 1.0
5—=6 13.0
/-5 6.0
7—=2 7.0

distTo[] edgeTol[]
0.0 -
5.0 0—1
/-
20.0 1—3
9.0 0—4

75

8.0 0—7

Dijkstra's algorithm demo

NN O L1 A WNN R O L

relax all edges adjacent from 7

13

0-=1 5.0
0-=4 9.0
0—=7 8.0
1-2 12.0
1-3 15.0
1-7 4.0
2—=3 3.0

- Consider vertices in increasing order of distance from s 26 11.0
36 9.0

(non-tree vertex with the lowest distTo[] value). 4=5 4.0

4—-6 20.0

- Add vertex to tree and relax all edges adjacent from that vertex. 4>7 5.0

5-=2 1.0
5—=6 13.0
7-=5 6.0

@ 7—=2 7.0
distTo[] edgeTol[]

0.0 -

5.0 0—1
15.0 /—2
20.0 1—3

9.0 0—4
14.0 /—5

Dijkstra's algorithm demo

©)

)

~NN OO v AW N R O L

8.0 0—7

select vertex 4

15

0-=1 5.0

04 9.0
Dijkstra's algorithm demo 07 8
1-3 15.0
17 4.0
. 2—3 3.0
- Consider vertices in increasing order of distance from s 26 11.0
36 9.0
(non-tree vertex with the lowest distTo[] value). 4=5 4.0
4—-6 20.0
- Add vertex to tree and relax all edges adjacent from that vertex. o7 s
5—-6 13.0
75 6.0
7—=2 7.0
v distTo[] edgeTol]
0 0.0 -
@ 1 5.0 01
8 2 15.0 7—2
@ 3 20.0 1-3
/ —> 4 9.0 0—4
: 5 14.0 7—5
14 .
4 /V
7 8.0 0—7
; : ® «

relax all edges adjacent from 4

16

0-=1 5.0
0-=4 9.0
0—=7 8.0
1-2 12.0
1-3 15.0
1-7 4.0
2—=3 3.0

- Consider vertices in increasing order of distance from s 26 11.0

3-6 9.0

(non-tree vertex with the lowest distTo[] value). 4=5 4.0

4—-6 20.0

- Add vertex to tree and relax all edges adjacent from that vertex. 4>7 5.0

5-=2 1.0
5—=6 13.0
/-5 6.0
7—=2 7.0

distTo[] edgeTol[]
0.0 -
5.0 0—1
15.0 7/—2
20.0 1—3
9.0 0—4

s

Dijkstra's algorithm demo

~NN OO v AW N R O L

8.0 v 0—7

relax all edges adjacent from 4

17

0-=1 5.0

04 9.0
Dijkstra's algorithm demo 07 8
1-3 15.0
17 4.0
. 2—3 3.0
- Consider vertices in increasing order of distance from s 26 11.0
36 9.0
(non-tree vertex with the lowest distTo[] value). 4=5 4.0
4—-6 20.0
- Add vertex to tree and relax all edges adjacent from that vertex. o7 s
5—-6 13.0
75 6.0
7—=2 7.0
v distTo[] edgeTol]
0 0.0 -
@ 1 5.0 01
2 15.0 7—2
@ 3 20.0 1-3
4 9.0 0—4
— 5 13.0 4—5
6 29.0 4—6
7 8.0 0—7

©) ®

select vertex 5

19

0-=1 5.0
0-=4 9.0
0—=7 8.0

Dijkstra's algorithm demo 12 12,0

1-3 15.0
17 4.0
2—=3 3.0

- Consider vertices in increasing order of distance from s 26 11.0

3-6 9.0

(non-tree vertex with the lowest distTo[] value). 4=5 4.0

4—-6 20.0

- Add vertex to tree and relax all edges adjacent from that vertex. 4>7 5.0

5-=2 1.0
5—=6 13.0
/-5 6.0
7—=2 7.0

distTo[] edgeTol[]
0.0 -
5.0 0—1
15.0 7/—2
20.
9.
13.
29.
8.

o O O O O
N
l
U1

relax all edges adjacent from 5

20

0-=1 5.0
0-=4 9.0
0—=7 8.0

Dijkstra's algorithm demo 12 12,0

1-3 15.0
17 4.0
2—=3 3.0

- Consider vertices in increasing order of distance from s 26 11.0

3-6 9.0

(non-tree vertex with the lowest distTo[] value). 4=5 4.0

4—-6 20.0

- Add vertex to tree and relax all edges adjacent from that vertex. 4>7 5.0

5-=2 1.0
5—=6 13.0
/-5 6.0
7—=2 7.0

distTo[] edgeTol[]
0.0 -
5.0 0—1
52
20.0 1—3
9.0 0—4
13.0 4—5

56

8.0 0—7

~NN O v AW N R O L

relax all edges adjacent from 5

21

0-=1 5.0

04 9.0
Dijkstra's algorithm demo 07 8
1-3 15.0
17 4.0
. 2—3 3.0
- Consider vertices in increasing order of distance from s 26 11.0
36 9.0
(non-tree vertex with the lowest distTo[] value). 4=5 4.0
4—-6 20.0
- Add vertex to tree and relax all edges adjacent from that vertex. o7 s
5—-6 13.0
75 6.0
7—=2 7.0
v distTo[] edgeTol]
0 0.0 -
@ 1 5.0 01
—> 2 14.0 5—2
@ 3 20.0 1-3
4 9.0 0—4
5 13.0 4—5
@ 6 26.0 56
7 8.0 0—7

©) ®

select vertex 2

23

0-=1 5.0

04 9.0
Dijkstra's algorithm demo 07 8
1-3 15.0
17 4.0
. 2—3 3.0
- Consider vertices in increasing order of distance from s 26 11.0
36 9.0
(non-tree vertex with the lowest distTo[] value). 4=5 4.0
4—-6 20.0
- Add vertex to tree and relax all edges adjacent from that vertex. o7 s
20 5—-6 13.0
75 6.0
7—=2 7.0
v distTo[] edgeTol]
0 0.0 -
@ 1 5.0 01
— 2 14.0 5—2
@ 3 20.0 1-3
4 9.0 0—4
I 5 13.0 4—>5
@ 6 26.0 56
7 8.0 0—7

(4) (6) 26

relax all edges adjacent from 2

24

0-=1 5.0

04 9.0
Dijkstra's algorithm demo 07 8
1-3 15.0
17 4.0
. 2—3 3.0
- Consider vertices in increasing order of distance from s 26 11.0
36 9.0
(non-tree vertex with the lowest distTo[] value). 4=5 4.0
4—-6 20.0
- Add vertex to tree and relax all edges adjacent from that vertex. o7 s
20 17 56 13.0
75 6.0
7—=2 7.0
v distTo[] edgeTol]
/ 0 0.0 -

@ 1 5.0 01

—> 2 14.0 5—2

(7) : 2 -3

4 9.0 0—4

I 5 13.0 4—>5

(5) 6 26

7 8.0 0—7

(4) (6) 26 2s

relax all edges adjacent from 2

25

0—=1 5.0
0-—=4 9.0
Dijkstra's algorithm demo e Gl
1-=2 12.0
1-3 15.0
17 4.0
2—=3 3.0

- Consider vertices in increasing order of distance from s 26 11.0

3-6 9.0

(non-tree vertex with the lowest distTo[] value). 4=5 4.0

4—-6 20.0

- Add vertex to tree and relax all edges adjacent from that vertex. 4>7 5.0

5-=2 1.0

5—=6 13.0
/-5 6.0
7—=2 7.0

distTo[] edgeTol[]
0.0 -
5.0 0—1
14.0 5—2
17.
9.
13.
25.
8.

©)
)) -

)
©) ©®

select vertex 3

N OO 1 AW NN R OL

O O O O O
N
!
U1

27

0—=1 5.0
0-—=4 9.0
Dijkstra's algorithm demo e Gl
1-=2 12.0
1-3 15.0
17 4.0
2—=3 3.0

- Consider vertices in increasing order of distance from s 26 11.0

3-6 9.0

(non-tree vertex with the lowest distTo[] value). 4=5 4.0

4—-6 20.0

- Add vertex to tree and relax all edges adjacent from that vertex. 4>7 5.0

5-=2 1.0

17 56 13.0
75 6.0
72 7.0

distTo[] edgeTol[]
0.0 -
5.0 0—1
14.0 5—2
17.
9.
13.
25.
8.

©)
)

o
o ® =

relax all edges adjacent from 3

O
N OO 1 AW NN R OL

O O O O O
N
!
U1

28

0—=1 5.0
0-—=4 9.0
Dijkstra's algorithm demo e Gl
1-=2 12.0
1-3 15.0
17 4.0
2—=3 3.0

- Consider vertices in increasing order of distance from s 26 11.0

3-6 9.0

(non-tree vertex with the lowest distTo[] value). 4=5 4.0

4—-6 20.0

- Add vertex to tree and relax all edges adjacent from that vertex. 4>7 5.0

5-=2 1.0

17 56 13.0
75 6.0
72 7.0

distTo[] edgeTol[]
0.0 -
5.0 0—1
14.0 5—2
17.
9.
13.
25.
8.

©)
)

o
o ® =

relax all edges adjacent from 3

O
N OO 1 AW NN R OL

O O O O O
N
!
U1

29

0-=1 5.0

04 9.0
Dijkstra's algorithm demo 07 8
1-3 15.0
17 4.0
. 2—3 3.0
- Consider vertices in increasing order of distance from s 26 11.0
36 9.0
(non-tree vertex with the lowest distTo[] value). 4=5 4.0
4—-6 20.0
- Add vertex to tree and relax all edges adjacent from that vertex. o7 s
5—-6 13.0
75 6.0
@ 7—2 7.0
v distTo[] edgeTol]
0 0.0 -
@ 1 5.0 01
2 14.0 52
() (2) 5 170 23
4 9.0 0—4
5 13.0 4—5
@ — 6 25.0 2—6
7 8.0 0—7

®)

select vertex 6

31

0-=1 5.0

04 9.0
Dijkstra's algorithm demo 07 8
1-3 15.0
17 4.0
. 2—3 3.0
- Consider vertices in increasing order of distance from s 26 11.0
36 9.0
(non-tree vertex with the lowest distTo[] value). 4=5 4.0
4—-6 20.0
- Add vertex to tree and relax all edges adjacent from that vertex. o7 s
5—-6 13.0
75 6.0
@ 7—2 7.0
v distTo[] edgeTol]
0 0.0 -
@ 1 5.0 01
2 14.0 52
() (2) 5 170 23
4 9.0 0—4
5 13.0 4—5
@ — 6 25.0 2—6
7 8.0 0—7

®)

relax all edges adjacent from 6

32

0-=1 5.0

04 9.0
Dijkstra's algorithm demo 07 8
1-3 15.0
17 4.0
. 2—3 3.0
- Consider vertices in increasing order of distance from s 26 11.0
36 9.0
(non-tree vertex with the lowest distTo[] value). 4=5 4.0
4—-6 20.0
- Add vertex to tree and relax all edges adjacent from that vertex. o7 s
5—-6 13.0
75 6.0
@ 7—2 7.0
v distTo[] edgeTol]
0 0.0 -
S 1 5.0 0—1
2 14.0 52
@ 3 17.0 2—3
4 9.0 0—4
5 13.0 4—5
6 25.0 2—6
7 8.0 0—7

shortest-paths tree from vertex s

34

