CS62 Class 18: Hash Tables (pt1)

hash
keys function buckets
00
, 01 | 521-8976
John Smith
02 | 521-1234
, , 03
Lisa Smith 1
13

Sandra Dee —
T~ 14 | 521-9655

15

Agenda

* Motivation
* Deriving hashtables: naive approach
* Separate chaining & handling collisions

* Hash table resizing

Hashtable motivation

We’ve now seen several implementations of maps...

Worst case Average case
Search Insert Delete Search Insert Delete Notes
BST n n n log n log n \/Z Random trees are log n
23Tree logn logn logn logn logn logn ?;S:ﬁ;ue'r:fea' very hard to
L LRE logn logn logn logn logn logn Bijection with 2-3 tree,

hard to implement

Limits of Search Tree Based Maps (and Sets)

Our search tree based sets require items to be comparable.

#

+ Need to be able to ask “is X <Y?" Not true of all types (ex. How do you compare
and 157?).

» Could we somehow avoid the need for objects to be comparable?
Our search tree sets have excellent performance, but could maybe be better?
» O(log N) is amazing. 1 billion items is still only height ~30.

» Could we somehow do better than ©(log N)?

Today we'll see the answer to both of the questions above is yes.

Hash functions associate data with a storage bucket

+ Hash tables take data, transform them using a hash function into integer indices
for storage buckets. We'll be focusing on .add() and . contains() today.

Buckets
(storage)
Data
1 Cat 1
.add("cat")
1" Cat 1
- . "chupacabra”
.add(”bee”)
w "bee"
.add("chup v
acabra")
contains("cat") This magic “hash function” 'u

computation takes O(1)

Naive approach:
Data indexed arrays

How would we implement extremely fast add/lookups?

One extreme approach: Create an array of booleans indexed by data.
Data = integers, which is also the index of the array.

» |Initially all values are false

* When an item is added, set appropriate index to true

DatalndexedIntegerSet diis;
diis = new DataIndexedIntegerSet();

Set containing nothing

Using Data as an Index

One extreme approach: Create an array of booleans indexed by data.
Data = integers, which is also the index of the array.

» |Initially all values are false

* When an item is added, set appropriate index to true

DatalndexedIntegerSet diis;
diis = new DataIndexedIntegerSet();
diis.add(Q);

Set containing O

Using Data as an Index

One extreme approach: Create an array of booleans indexed by data.
Data = integers, which is also the index of the array.

» |Initially all values are false

* When an item is added, set appropriate index to true

DatalndexedIntegerSet diis;

diis = new DataIndexedIntegerSet();
diis.add(Q);

diis.add(5);

Set containing O, 5

Using Data as an Index

One extreme approach: Create an array of booleans indexed by data.
Data = integers, which is also the index of the array.

» |Initially all values are false

* When an item is added, set appropriate index to true

DatalndexedIntegerSet diis;

diis = new DataIndexedIntegerSet();
diis.add(Q);

diis.add(5);

diis.add(11);

Set containing O, 5, 11

DatalndexedintegerSet implementation

public class DataIndexedIntegerSet {
private boolean|[] present;

public DataIndexedIntegerSet() {
present = new boolean[2000000000] ;

¥

public void add(int 1) {
present[1] = true;

¥

public boolean contains(int 1) {
return present|[i];

¥

Q: What are some downsides
to this approach?

add() is a constant time

operation: just set a flag to
true

contains() is a constant

time operation: just look
up the value in the array

Set containing 0, 5, 11

DataindexedintegerSet downsides

public class DatalndexedIntegerSet {
private boolean|[] present;

public DataIndexedIntegerSet() {
present = new boolean[2000000000] ;

¥

public void add(int 1) {
present[1] = true;

¥

public boolean contains(int 1) {
return present|[i];

¥

Extremely wasteful
of memory

Need some way to
generalize beyond
integers

Set containing 0, 5, 11

Generalizing to (English)
Strings

aka Hashing

Generalizing the DatalndexedintegerSet Idea

0

(44) 1 d

Suppose we want to add(“cat™) 5 .

: 3 C

The key question: 4 d
« What is the catth element of a list?

* Oneidea: Use the first letter of the word as an index. 23 Y

26 Z

« a=1,b=2c=3,.. z2=26

What's wrong with this approach?

* Other words start with c. we say that “chupacabra” collides
- ~ with “cat”

* contains(“chupacabra”) : true

* Can't store “:3”

Avoiding Collisions

Here's an idea: To get the new index, we will use all the letters by
multiplying each by a power of 27.

a=1,b=2,¢c=3,..,2=26
* Thus the index of “cat”is (3 X 2/72) + (1 x 271) + (20 x 2/0) =

2234, -

A

2233 cas
2234 cat
Why this specific pattern? 2235 cau

+ Let's review how numbers are represented in decimal.

The Decimal Number System vs. Our System for Strings

In the decimal number system, we have 10 digits: 0, 1, 2, 3,4,5,6,7, 8,9
Want numbers larger than 97 Use a sequence of digits.

Fxample: 7091 in base 10

o+ 7097110=(7x103)+(0x 102)+(9x 101 + (1 x 100)

Our system for strings is almost the same, but with letters (base 27, we don't use 0).
o Caty7,=(3Xx272)+ (1 x27")+(20x279)=22344,

This is the beginnings of a hash function.

Worksheet time!

Convert the word “bee” into a number by using our “powers of 27" strategy. That
S, hash “bee”.

Reminder: Caty;= (3 X 272) + (1 x277) + (20 x 279) = 22344,

Hint: ‘b’ is letter 2, and ‘e’ is letter 5. And 272 =729 (but feel free to use a calculator)

Worksheet answers

Convert the word “bee” into a number by using our “powers of 27" strategy.

Reminder: Caty7;= (3 X 272) + (1 x277) + (20 x 279) = 22344,

Hint; ‘b’ is letter 2, and ‘e’ is letter 5. And 272 =729

* Deeyy=(2x272)+(5x27")+(5x279) =
(1458) +(135) + (5) = 15984

Avoiding collisions with uniqueness

o Calyy=(3x272)+ (1 x27")+(20x279) =2234,,
o Deey;=(2x272)+(5x271)+(5x 279 =1598,

As long as we pick a base > 26, this algorithm is guaranteed to give each lowercase
English word a unique number

» Using base 27, no other words will get the number 1598.

This is an example of a hash function for hashing lowercase English words where it's
guaranteed that we will never have a collision.

(Practice problem: write an englishToInt hash function that will automatically compute the hash for any
input english word.)

DatalndexedEnglishWordSet Implementation

public class DataIndexedEnglishWordSet { |
Lvate boolean[] present; e ve solvedihe
priva ’ first problem of
. . generalizing from
public DataIndexedEnglishWordSet() { integers through
pl"esent = New bOO].QCW][Z@@@@@@@@@]; intrOducingahash
} function
englishToInt(s) >c
public void add(String s) { , >z/
present[englishToInt(s)] = true; o ..
} P resentli] = true,
} |
public boolean contains(String s) { A old way 5533 Egi
return present|[englishToInt(s)]; 34
1 2235 cad
$ S
Set containing “cat

Generalizing to any String

DatalndexedStringSet

Using only lowercase English characters is too restrictive.

» What it we want to store strings like “2pac” or "eGg!"?

» To understand what value we need to use for our base, let's briefly discuss the
ASCII standard.

ASCII Characters

The most basic character set used by most computers is ASCIl format.

Each possible character (128 total) is assigned a value between 0 and 127.
Characters 33 - 126 are “printable”, and are shown below.

For example, char c

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

+ ¥ TR R K

-~

\ -

‘D' is equivalent to char ¢ = 68.

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

O O ~NOYOULT D WIN =

@ .\) V II A -~ . - .

65
66
67
68
69
70
/1
72
73
74
75
76
77
/8
79
80

v OoOoOZIIrX"TammogOm®>P

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

>'—‘/HN-<><§<C—'IU)WO

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112

UO:B—XH-—'jo—hmano—m

113
114
115
116
117
118
119
120
121
122
123
124
125
126

Y — AN X s < CcrTwnaoQ

N\

biggest value is 126

DatalndexedStringSet

Using only lowercase English characters is too restrictive.

» What it we want to store strings like “2pac” or "eGg!"?

» Let's use the ASCII standard as an encoding, and take 126 as our base.

Examples:

o Dee=(98x1262)+ (101 x 1261+ (101 x 1260) = 1,568,675
® /pPacCi=(00x1263)+(112x1262)+(97x126")+ (99 x 126°) =101,809,233
o eGgli=(98x1263)+ (/1 x1262)+ (98 x 1267) + (33 x 1269) = 203,178,213

Implementing the hash function asciiTolnt

public static int asciiToInt(String s) {
1nt 1ntRep = 0;
for (1int 1 =0; 1 < s.lengthQ); 1 += 1) {
1ntRep = 1ntRep * 126;
1ntRep = 1ntRep + s.charAt(i);

Strings are composed of
chars, so they

) : . automatically take their
return intrep; ASCII value in math
¥ operations

Finally, if you want to use characters beyond ASCII, you can use the Unicode
encoding. This supports, for instance, characters like 51, T, and Ll

Another problem: Integer Overflow

In Java, the largest possible integer is 2,147,483,647.

» |f you go over this limit, you overtlow, starting back over at the smallest integer,
which is -2,147,483,648.

* |In other words, the next number after 2,147,483,647 is -2,147,483,648.

iht x = 2147483647
System.out.println(x);
System.out.println(x + 1);

$ javac BiggestPlusOne. java
$ java BiggestPlusOne

2147483047
-2147483048

Consequence of Overflow: Collisions for long words

Because Java has a maximum integer, we won't get the numbers we expect!
» With base 126, we will run into overflow even for short strings.

+ Example: omens,6= 28,196,917,171, which is much greater than the
maximum integer (28 billion versus 2 billion)!

» asciiToInt('omens’) will give us-1,867,853,901 instead due to overflow.

» Overtlow can lead to collisions, resulting in wrong answers.

public static void main(String[] args) {
DatalIndexedStringSet disi = new DatalndexedStringSet();
disi.add("melt banana");
disi.contains("subterrestrial anticosmetic”); - returns true!

Hash Codes and the Pigeonhole Principle

The official term for the number we're computing is a “hash code”, which is the result of a hash
function.

» Via Wolfram Alpha: a hash code “projects a value from a set with many (or even an infinite
number of) members to a value from a set with a fixed number of (fewer) members.”

* Here, our target set is the set of Java integers, which is of size 4,294,967,296 (both negative and
positive integers).

Pigeonhole principle tells us that if there are more than
4294967296 possible items, multiple items will share the
same hash code.

* There are more than 4294967296 strings.

i1 n i

+ “one”, “two”, ... “nineteen quadrillion”, ...

Bottom line: Collisions are inevitable,

http://mathworld.wolfram.com/HashFunction.html
https://en.wikipedia.org/wiki/Pigeonhole_principle

Hash Tables

Two Fundamental Challenges of Hash Tables

How do we resolve hash code collisions?

How do we compute a hash code for arbitrary objects?
Example: Our hash code for “cat” was 2234.
For Strings, this was relatively straightforward (treat as a base 126 number).

What about for CLass PomonaStudent objects? What about for lists?

Solution for collisions: buckets

Suppose N items have the same numerical representation h:

® Example: hash code for “rats!” and “lovely” might both be 718.
® |nstead of storing true in position h, store a "bucket” of these N items at position h.

How to implement a “bucket”?

i o o[F] o[~
e (Conceptually simplest way: Singly Linked List.
e (ould also use ArraylLists.

e Will see it doesn't really matter what you do. (lr ’ls '
718 718 .
719 719

"Separate chaining data indexed array"”

Each bucket in our array is initially empty. When an item x gets added at index h:

If bucket h is empty, we create a new list containing x and store it at index h.

If bucket h is already a list, we add x to this list if it is not already present.

We might call this a “separate chaining data indexed array”.

Bucket #h is a “separate chain” of all items that have hash code h.

1=
1

111239443
111239444
111239445 |

__Initially all buckets are empty.

"Separate chaining data indexed array"”

Each bucket in our array is initially empty. When an item x gets added at index h:

If bucket h is empty, we create a new list containing x and store it at index h.

If bucket h is already a list, we add x to this list if it is not already present.

We might call this a “separate chaining data indexed array”.

Bucket #h is a “separate chain” of all items that have hash code h.

Bucket 1 now has a length 1 list
add("a") ? E

111239443
111239444
111239445

"Separate chaining data indexed array"”

Each bucket in our array is initially empty. When an item x gets added at index h:

If bucket h is empty, we create a new list containing x and store it at index h.

If bucket h is already a list, we add x to this list if it is not already present.

We might call this a “separate chaining data indexed array”.

Bucket #h is a “separate chain” of all items that have hash code h.
- =N
add(" chupacabra™) 1 - ’[:::]
111239443 %—

111239444
111239445

"Separate chaining data indexed array"”

Each bucket in our array is initially empty. When an item x gets added at index h:

If bucket h is empty, we create a new list containing x and store it at index h.

» If bucket h is already a list, we add x to this list if it is not already present.

We might call this a “separate chaining data indexed array”.

Bucket #h is a “separate chain” of all items that have hash code h.

i J=l-

add(" chupacabra™)

add("presto’) 111239443 %—

111239444
111239445

Both chupacabra and presto have

hash code 111239443 using
englishToInt()

"Separate chaining data indexed array"”

Each bucket in our array is initially empty. When an item x gets added at index h:

» If bucket h is empty, we create a new list containing x and store it at index h.

» If bucket his already a list, we add x to this list if it is not already present.
Note, if we were storing key/value pairs instead, we would update the value instead.

We might call this a “separate chaining data indexed array”.

» Bucket #h is a “separate chain” of all items that have hash code h.

7,
add(nau) @
add(" chupacabra™) 1 {:::]
add("presto™)

add("chupacabra™) 111259443 %_

111239444
111239445

Doesn't do anything, because
chupacabra is already present

"Separate chaining data indexed array"”

Each bucket in our array is initially empty. When an item x gets added at index h:

» If bucket h is empty, we create a new list containing x and store it at index h.

» If bucket his already a list, we add x to this list if it is not already present.

We might call this a “separate chaining data indexed array”.

* Bucket #h is a “separate chain” of all items that have hash code h.

0
CICICI(“CI“) E_E \
add("chupacabra™) 1 N
add("presto")

add(" chupacabra™) 111239443

contains("presto”) 111239444
Traverse the list in bucket 111239445 Pause: what's your intuition of a scenario
111239443 to see if presto exists where contains is no longer O(1), but O(Q)

where Q is the length of the linked list?

Saving Memory Using Separate Chaining

Observation: We don't really need billions of buckets.

Q: If we use the 10 buckets on the right,
0 |Z where should our five items go?

1508 [——[Bee_| ;
>

2234 [+t | ;
5

3328 [}—{dog_| g
8

9

111239442

Saving Memory Using Separate Chaining and modulus

We can use the modulus operator to reduce bucket count. (Downside is that the lists

will be longer.) Q: If we use the 10 buckets on the right,

L 5
0 |Z where should our five items go:

A: Try bucket = hash code % 10 (i.e.,
look at the last digit of the hash code)

1508 [}—{Bee |

1239003 (51— {presto |

O OO NOUTPHWNPEOS

111239442

Finally: The Hash Table

What we've just created here is called a hash table.

* Data is converted by a hash function into an integer representation called a hash
code.

» The hash code is then reduced to a valid index, usually using the modulus
operator, e.g. 2348762878 % 10 = 8.

data hash function

* englishToInt L hash code
2234

cat

OO ~NOUT S~ WNEOS

A hash table!

Separate/External Chaining (Closed Addressing)

* The formal name for what we've learned is
called “separate chaining”, “external chaining”,
or “closed addressing”. (Why can't computer

scientists just give one concept one name?)

» Use an array of m < n distinct linked lists

(C h dll S) m = # of buckets/chains in a hashtable

[H.P. Luhn, IBM 1953]. "~ fotalelements
» Hash: Map key to integer i between 0 and

m— 1.

* Insert: Put key-value pair at front of i-th
chain (if not already there in which case we
only update the associated value).

« Search: Need to only search the i-th chain.

xey hash

w

> X m I M RN P> m

v =

m -

~N

oowow e O N O B P Ao o

Note: In our textbook example, we store
key-value pairs, while we've just been
talking about keys so far in lecture

'v',i"h“'°...'.~‘
llllll "-0|.‘s-li
SequentialSearchsST

1
T
|/
4

Mo f—~{u]s—~{c]|—~|R]

Hashing with separate chaining for standard indexing client

Note: in lecture, we saw putting it at the back of
the chain, but the textbook example puts it at the
front. (Why?) (More recent data quicker to access.)

Worksheet time!

» Assume a dictionary implemented using hashing and separate chaining for
handling collisions.

 Letm =7 be the hash table size.

» For simplicity, we will assume that keys are integers and that the hash value for
each key k is calculated as (k) = k % m.

* Insert the key-value pairs (47, 0), (3, 1), (28, 2), (14, 3), (9,4), (47,5) and show the
resulting hash table.

As an example, for (47, 0)

Hash value of 47 =47 % 7 =5
47, @ store key/value pairs!

OO Ul h~h WINNEFEPOS

Worksheet answers

Key Hash Value
0 14,328, 2
47 5 0
1
3 3 1
2 9, 4
28 0 2
3 3,1
14 0 3
4
9 2 4 5 47, 5

47 5 5 c

Hash Table Resizing

What makes a good hash function?

+ We want a hash function that spreads things out nicely on real data.
» Example #1: return 0 is a bad hash code function.

» Example #2: just returning the first character of a word, e.g. “cat” = 3 was also a
bad hash function.

» Example #3: adding chars together is bad. “ab” collides with “ba”.
» Example #4: returning string treated as a base B number can be good!

» A good hash function is hard to write, but it should scramble data seemingly
randomly, so they will be evenly distributed over the hash table.

Bad hash code: Good hash code: items
everything is in one are distributed evenly

bucket

(g g o O I o B

Improving the hash table

Suppose we have:

* A fixed number of buckets M.

* Anincreasing number of items N.

>
>
>
>
>

~ WNES

Major problem: Even if items are spread out evenly, lists are of length Q = N/M.

* For M =5, that means the list length Q will scale to the number of items N, which
results in linear time operations.

* The best case is all items are evenly distributed, so Q is N/5. The worst case is all the
items are in one bucket, so Q is N.

* Our goal: How can we improve our design to guarantee constant time operations? In
other words, how can we make N/M = O(1)?

Improving the hash table via resizing

0 - " Suppose we have:

1 > > > B | |

. - , M= 5, * An increasing number of buckets M.
N'=19 * An increasing number of items N.

3 > L g

4 >

Major problem: Even if items are spread out evenly, lists are of length Q = N/M.

* We can resize the hash table and increase the number of buckets to scale to the
number of items.

* For example, it we want an average of 1.5 (a constant) number of items in our lists,
then N/M = 1.5, so here, instead we would have M = 13 buckets for our N = 19 items.

* N/M is called the "load factor" - how "full" the hash table is.

Hash Table Resizing Example

When N/M is > 1.5, then double M.

N=0 M=4 N/M=0

Hash Table Resizing Example

When N/M is > 1.5, then double M.

Z
1

1 M

4 N/M=0.25

7»‘ Red number =
e hashcode result

Hash Table Resizing Example

When N/M is > 1.5, then double M.

N

2 M=4 N/M=0.5

Hash Table Resizing Example

When N/M is > 1.5, then double M.

N

3 M=4 N/M=0.75

3

Hash Table Resizing Example

When N/M is > 1.5, then double M.

N =4 M = 4 N/ M =1

a

3

Hash Table Resizing Example

When N/M is > 1.5, then double M.

N/M=1.25

E—ZOI
11

Hash Table Resizing Example

When N/M is > 1.5, then double M.

N/M=1.5

,Ei) . N/M is too large.
Time to double the
1 13 number of buckets!
/
, 11
3

Worksheet time!

Where do all the existing elements go on the new hashtable? Assume we are placing
items at the end, instead of beginning, of the list.
(Hint: how do we reduce hashes to bucket indices? How does that change with resize?)

When N/M is > 1.5, then double M.

Z
1
@)
=

M = N/M=1.5

A
o

@

N

W

N

U1

o

3 11
B

N

Worksheet answer: hash % 8 instead of hash % 4

When N/M is > 1.5, then double M.

~

N/M=1.5 2

Hﬂl

13

Worksheet answer: hash % 8 instead of hash % 4

When N/M is > 1.5, then double M.

0

1

N/M=15 2

: Eﬂl 3
13 4

11

3

Worksheet answer: hash % 8 instead of hash % 4

When N/M is > 1.5, then double M.

N =6 M=4 N/M=15 2
16 20 g

[3

> 5

3 7P’ 11’ o

Worksheet answer: hash % 8 instead of hash % 4

When N/M is > 1.5, then double M.

N/M=1.5 2

M=4
16 20> 3

3 7P’ 11’ .

N=06

Worksheet answer: hash % 8 instead of hash % 4

When N/M is > 1.5, then double M.

N =6 M=4 N/M=15 2
20 g
e 3
13
1 :
> 5

3 7P’ 11’ o

Worksheet answer: hash % 8 instead of hash % 4

When N/M is > 1.5, then double M.

N =6 M=4 N/M=15 2
20 g
e 3
13
1 :
> 5

3 7P’ 11’ o

Worksheet answer: hash % 8 instead of hash % 4

N=6 M =8 N /M =0.75
When N/M is > 1.5, then double M.

16
[
1
N =6 M = 4 N/M=1.5 2 1
16 20 g 3 w ’
R .
2 > =

3 7P’ 11’ .

@

Final notes

HashMap source code

We can then look at the code that implements the HashMap in Java:

 https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/util/
HashMap.java

Reading the code, we can see that:

» Hash table starts at size 16, then doubles every time N exceeds load factor which defaults
to 0.75.
» The reduce function is a bit complicated using bitwise operations you'll learn in CS105.

data hash function hash code

» (hc” (hc >>>16)) & (N -1)

reduce index
ForN=16

" =2108180664

https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/util/HashMap.java
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/util/HashMap.java

Another Interesting Optimization

If we ctrl-F for “red-black” we find that that if a bin gets too full, it is converted into a red-
black tree!

» “This map usually acts as a binned (bucketed) hash table, but when bins get too large,
they are transformed into bins of TreeNodes, each structured similarly to those in

java.util.TreeMap. Most methods try to use normal bins, but relay to TreeNode methods

when applicable (simply by checking instanceof a node). Bins of TreeNodes may be
traversed and used like any others, but additionally support faster lookup when
overpopulated. However, since the vast majority of bins in normal use are not

overpopulated, checking for existence of tree bins may be delayed in the course of table
methods.”

» This is well beyond the scope of our course.

“The most useful algorithms are, unfortunately, not always the most beautiful.” - Josh Hug

| st s}zmsu.m L RORISHEYET o mw £S rl AR i \iii
s e BE108 5 G 1 0 § 5t ““* Bl | 3 SR L0 § 3 D0 DL CEIBNOREIn | U0 COAK CRBR tARS un T B

B o
almm TTig gl x lqlmm 0 mmuwuﬁ“ﬁmu

B ARt R OO k?t(i“i(l% 241

e FAE L dls b3 BT R NS Al A D B R
!*311?35;? i?ii?ll?%‘ili¥iril!??llf ?‘315?3 T’

Herman Hollerith invented using punch iaan,, |
cards to organize data for the 1890 US T T S e
census (can physically sort cards based on
hole location)

Ei{ﬁsnawa&eﬁsse%aa&aellﬁgiiaegemasg
f

§l>‘ t u 4:3- -, 125 38 53 g, 't 2} _:p. §.¢;:;.§':<" 4F 47 SA 2b 47 A28 s G 9 TA s SRENGEoF G F4IES % BY BEEE 5L 2

343353335333333%3[f*33¢3|343331333zzzzzasjjasadaszsanss*33%335

l

44%54&4&%&44444%44~4

:qs z;nifs SRR N S

6553&55355561553355ssss&s[s&;ssss55[5155%55&33333&5:5&5355

444¢§é444&$44444€$4444€§444£H$44 4444644#%*&4

«3“9 wgl%lﬁ'wts,\ o B o * BB BN R4l B 61 sHER 1 ORI W

..s;r:.*’
8.\? th@ ¥)uuss' «aa

:k.‘ i
Bk il | _
= '.-§5555%55§h‘3355§55555}5565553538555,55555&%5'55%55555&3555355&@5&& Ser

i 'z:i'"'"f:"':‘-:j@izf,fT as;*}' ; S AR R T GieE €40 RRERE 4 6 Wl RSN NS S B RSN BRI R S5 1 MR R 20

DR EREIESE 3773zz?:?7:ﬁv}?371rz:173?;rﬂ;??33?zz;y?zzryzzz7ﬁv;
“'aaasas¢aa|agssassssstsl sssaasa@ssss[ssstsazsaxysasssf" S

by LEILRRE
R RN EE Rl Ens W3S B 30 R SR G R M50 e v el 6 R T g ,5 &3 2 g

B] T
. Jd 4 ;
33N 98 QQQQ%'S83%ﬁ%’iﬁrﬁﬁﬁﬁ%s9999993‘§§§§§99'999933;33333’3:'
'“3

gy umap o
(3 9E5309500009185054954199990999/9399,99991654019°J5518933) §3/3899
R & AL MBS b it @ R RN M G Gt e @i s %z&‘,ﬁ_&-ﬁf}yg-’ﬁé"ﬁﬁ% BT R s&f:; BRI BRI
g f3372? Sniiiiieicsananpt i anal T e b R R i R A X

* This inspired IBM to make punch cards in
the 1928s to store all kinds of data - the
precursor to hash tables!

TR ks

WANDITHE

- 4

During WWII, IBM’'s German branch (Dehomag) supplied the Nazi
regime with punch cards to track things like a person’s gender, age,
race, and religion...so they could track who was Jewish to deport them

and put them in concentration camps

$
o ‘—J-|

sH:Basasl
allsdaslallas

ssssssshssss =

THE STRATEGIC ALL|ANI'(.3‘

BETWEEN NAZI 1/

At the same time, in the US, punch cards were used to track interned
Japanese Americans

https://cs.pomona.edu/classes/cs62/history/hashtables/

https://cs.pomona.edu/classes/cs62/history/hashtables/

H iStOry repeats itself ICE to Use ImmigrationOS by Palantir, a New Al

System, to Track Immigrants’ Movements

* Just like how IBM merged with state power
and state interests during WWII, we see
similarities today (e.g. Palantir and ICE)

» Questions:

» When does abstraction become dangerous? How might simplifying human identity into
keys and categories—whether via punch cards or hash functions—erase complexity in

ethically troubling ways?

* |n what ways do modern technologies, like hash-based recommendation systems or
surveillance tools, reflect the values of the corporations that build them? How should
we understand the role of tech companies in shaping the moral direction of our digital

infrastructure?

https://cs.pomona.edu/classes/cs62/history/hashtables/

https://cs.pomona.edu/classes/cs62/history/hashtables/

Lecture 18 wrap-up

» Checkpoint 2 regrades due 11:59pm next Thursday
- No HW this week, but final group project details released in lab tonight
» Lab tonight is project specs/details + coding interview practice

* Practice writing code on the board and thinking through your process orally in groups
— don't worry, you'll get full marks for just participating!

Resources

* Hashtable history (it's really dark. More next lecture):

* Reading from textbook: Chapter 3.4 (Pages 458-477),
* Hashtable visualization:
* Practice problems behind this slide

* Most of these slides were from my hashtable teaching demo from when | was applying to teaching
jobs ... :)

https://cs.pomona.edu/classes/cs62/history/hashtables/
https://cs.pomona.edu/classes/cs62/history/hashtables/
https://algs4.cs.princeton.edu/34hash/
https://visualgo.net/en/hashtable?slide=1

Problem 1

« InsertthekeysE, A S, Y,Q, U EST,I O, Ninthat order into an initially empty table of m=5 lists, using separate
chaining. Use the hash function 11*k%m to transform the k-th letter of the English alphabet into a table index.

Problem 2

Try to write a function englishTolnt that can convert English strings to integers by adding
characters scaled by powers of 27.

Examples:

* a:

* 7. 26

* aa: 238

* bee: 1598

+ cat: 2234

» dog: 3328

* potato: 237,949,071

Answer 1

« InsertthekeysE, A S, Y,Q,UEST,I O, Ninthat order into an initially empty table of m=5 lists, using separate
chaining. Use the hash function 11*k%m to transform the k-th letter of the English alphabet into a table index.

* 0->0->T->Y->E
- 1>U->a2a

+ 2->0

» 3->null

* 4 >N->[->5

Answer 2

/** Converts 1th character of String to a letter number.
*e.g. 'a' >1, 'b' > 2, 'z'" -> 20 */
public static int letterNum(String s, int 1) {
int 1thChar = s.charAt(i);
1t ((1thChar < "a’) Il (1thChar > "z"))
{ throw new IllegalArgumentException(); }
return 1thChar - 'a' + 1;

¥

public static 1int englishToInt(String s) {
1nt 1ntRep = 0;
for (int 1 =0; 1 < s.length(); 1 += 1) {
1ntRep = 1ntRep * 27;
1ntRep = 1ntRep + letterNum(s, 1);
$

return intRep;

