
CS62 Class 18: B-Trees
Searching

2-3-4 tree  

(max 3 items per node, 
each node can have 2, 3, or 4 children)

2-3 tree  

(max 2 items per node, 
each node can have 2 or 3 children)



Agenda
• B-Trees 

• Motivation/derivation 

‣ Splitting nodes 

‣ Chain reaction splitting 

• Terminology  

• Construction & Invariants 

• Performance 

• (Note: we won’t cover deletion)



Last time
• Binary search trees (BSTs) can be “bushy” or “spindly” and BST operations take 

O(h), where h is the height of the tree. Bushy trees are of height log(n), while 
spindly trees are height n. 

• Dramatic difference!
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Last time review
Which of these statements are true? 

A. Worst case BST height is Θ(N). "Is equal to linear." 

B. BST height is O(N). "Is less than or equal to linear." 

C. BST height is O(N2). "Is less than or equal to quadratic." 



Last time review
Which of these statements are true? 

A. Worst case BST height is Θ(N). "Is equal to linear." 

B. BST height is O(N). "Is less than or equal to linear." 

C. BST height is O(N2). "Is less than or equal to quadratic." 

All are true! 

• A worst case (spindly tree) has a height that grows exactly linearly - Θ(N). 

• All BSTs have a height that grows linearly or better - O(N). 

• All BSTs have a height that grows quadratically or better - O(N2). 

• However, A is the most informative statement. N2 > N, but we want the smallest 
upper bound, which is given to us by Θ(N). (equal, not less than or equal to)



B-trees: motivation



Good News and Bad News
Good news: BSTs have great performance if we insert items randomly. Performance 
is Θ(log N) per operation. 

Bad News: We can’t always insert our items in a random order. Why?
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Good News and Bad News
Bad News: We can’t always insert our items in a random order. Why? 

• Data comes in over time, don’t have all at once. 

• Example: Storing dates of events. 

‣ add(“01-Jan-2019, 10:31:00”) 

‣ add(“01-Jan-2019, 18:51:00”) 

‣ add(“02-Jan-2019, 00:05:00”) 

‣ add(“02-Jan-2019, 23:10:00”) 

In this lecture, we’ll do something totally different.
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Avoiding Imbalance through Overstuffing
The problem is adding new leaves at the bottom, which can create spindly trees. 

Why don’t we avoid new leaves allt ogether? 

Why not just “overstuff” the existing leaf nodes? 
• “Overstuffed tree” always has balanced height, 

because leaf depths never change. 
• Height is just max(depth).
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Avoiding Imbalance through Overstuffing
Overstuffed trees are a logically consistent but very weird data structure. 

• contains(18):  
• Is 18 > 13? Yes, go right. 
• Is 18 > 15? Yes, go right. 
• Is 16 = 18? No. 
• Is 17 = 18? No. 
• Is 18 = 18? Yes! Found it. 

Q: What is the problem with this idea?
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Revising Our Overstuffed Tree Approach: Moving Items Up
Height is balanced, but we have a new problem: 

• Leaf nodes can get too juicy. 

Solution? 

• Set a limit L on the number of items, say L=3. 
• If any node has more than L items, give an item to parent. 

• Which one? Let’s say (arbitrarily) the left-middle.

Q: What’s the problem now? 
• 16 is to the right of 17.
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Q: How can we tweak this idea to make it work?



Revising Our Overstuffed Tree Approach: Node Splitting 

Height is balanced, but we have a new problem: 

• Leaf nodes can get too juicy. 

Solution? 

• Set a limit L on the number of items, say L=3. 
• If any node has more than L items, give an item to parent. 

• Pulling item out of full node splits it into left and right. 
• Parent node now has three children!  

(no longer a binary tree)

5

2 7

15  17

14 18  19

13

16

5

2 7

15

14 16  17  18  19

13



Searching
Now, to search for a node in the new split tree: 

• contains(18):  
• 18 > 13, so go right 
• 18 > 15, so compare vs. 17 
• 18 > 17, so go right 
• 18 = 18, we found it! 

Examining a node costs us O(L) (L is the number of items in a node) compares, but that’s OK 
since L is constant. 

What if a non-leaf node gets too full? Can we split that? 

• Sure, we’ll do this in a few slides, but first...
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Worksheet time!
• Suppose we add 20, 21:
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If our cap is at most L=3 items per node, draw post-split tree.



Worksheet answers
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Original move 19 up, then split [18] to the left, [20 21] to the right



Chain reaction splitting



Insertion: Chain Reaction
Suppose we add 25, 26:
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What Happens If The Root Is Too Full?

Draw the tree after the root is split.
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Worksheet time!

• Draw the tree after the root is split.

24  25155

13  17  21  23

19 22



Worksheet answers

Original

17 becomes the new root 
its left child is 13 
its right child is [21, 23] 
we recursively bring along their children, making sure 
they are in the proper left/right place24  25155
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Perfect Balance
Observation: These splitting trees have perfect balance. 

• If we split the root, every node gets pushed down by exactly one level. 
• If we split a leaf node or internal node, the height doesn’t change.  

All operations have guaranteed O(log N) time (more details soon).
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B-tree terminology



The Real Name for Splitting Trees is “B Trees”
B-trees  

• B-trees of order L=3 (like we used today) are also called a 2-3-4 tree or a 2-4 tree.  
• “2-3-4” refers to the number of children that a node can have, e.g. a 2-3-4 tree 

node may have 2, 3, or 4 children. 
• B-trees of order L=2 are also called a 2-3 tree. 
• B for bushy? Balanced?

The origin of "B-tree" has never been explained by the authors. As we shall 
see, "balanced," "broad," or "bushy" might apply. Others suggest that the "B" 
stands for Boeing. Because of his contributions, however, it seems 
appropriate to think of B-trees as "Bayer"-trees.  

- Douglas Corner (The Ubiquitous B-Tree) 



B-Trees
B-Trees are most popular in two specific contexts: 

• Small L (L=2 or L=3): 
• Used as a conceptually simple balanced search tree (as today). 

• L is very large (say thousands). 
• Used in practice for databases and filesystems (i.e. systems with very large 

records).

2-3-4 a.k.a. 2-4 Tree (L=3): 
Max 3 items per node. 
Max 4 non-null children per node.
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2-3 Tree (L=2): 
Max 2 items per node. 
Max 3 non-null children per node.
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Construction



Going back to our motivation…
Add the numbers 1, 2, 3, 4, 5, 6, then 7 (in that order) into a regular BST.

Resulting BST is spindly.4
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Exercise together
Add 1, 2, 3, 4, 5, 6, 7 (in that order) into a 2-3 tree. For L=2, pass the middle item up.

Adding 1.

1  2

Adding 2.

Adding 3. Node is too full, so we need to split.

1  2  3

Before split After split

1 3

2



Exercise together
Add 1, 2, 3, 4, 5, 6, 7 (in that order) into a 2-3 tree. For L=2, pass the middle item up.

3  41

2

Adding 4.

Adding 5. Node is too full, so we need to split.

Before split After split

3  4  51

2 2  4

1 53

After adding 3.

1 3

2



After adding 5.

2  4

1 53

Exercise together
Add 1, 2, 3, 4, 5, 6, 7 (in that order) into a 2-3 tree. For L=2, pass the middle item up.

Adding 6.

Adding 7. Node is too full, so we need to split.

5  6

2  4

1 3

5  6  7

2  4

1 3

2 6

4

1 3 5 7

2  4  6

1 53 7

Before split After one split After two splits



• Given the following 2-3-4 tree, insert keys H, I, J, K.

A  B D

C  E

F  G

Worksheet time!

Note, here we have explicitly 
visualized the null child nodes



A  B D

C  E

F  G  H

Worksheet answer - H

A  B D

C  E

F  G

Insert H at the end. 

No splitting needed.



A  B D

C  E

F  G  H I

Worksheet answer - I
Insert I at the end. 

Split and move up G.

A  B D

C  E  G

F H  I



Worksheet answer - J
Insert J at the end. 

No splitting needed.

A  B D

C  E  G

F H  I J



Worksheet answer - K
Insert K at the end. 

2 splits required.

A  B D

C  E  G

F H  I J K

A  B D

C  E  G I

F  J KH

HA  B D F

C

J K

G  I

E



B-Tree Invariants
Because of the way B-Trees are constructed, we get two nice invariants: 

• All leaves must be the same distance from the root. 

• A non-leaf node with k items must have exactly k+1 children. 

• Example: The tree given below is impossible. Why? 

• Leaves ([1] and [5 6 7]) are a different distance from the source. 

• Non-leaf node [2 3] has two items but only only one child. Should have three 
children.

2 3 5  6  7

4

1

We have not proven these invariants rigorously, but try thinking them through. These invariants guarantee 
that our trees will be bushy.



Worksheet time!
• Draw the 2-3-4 tree that results when you insert the keys: 

5, 1, 19, 25, 17, 21, 20, 9, 15, 14, 16, 18, 26 in that order in an initially 
empty tree.



Worksheet answers



Performance



Height of a B-Tree with Limit L
L: Max number of items per node. 

Height: Between ~logL+1(N) and ~log2(N) 

• Largest possible height is all non-leaf nodes have 1 item. 

• Smallest possible height is all nodes have L items. 

• Overall height is therefore Θ(log N). 

N: 26 items 
L: 2 max per node 
H: 2

Height grows with log3(N)

* *

*

* * * * *
N: 8 items 
L: 2 max per node 
H: 2 

Height grows with log2(N) 
 

*  *

*  * *  **  *

*  * *  * *  * *  * *  * *  * *  * *  * *  *

near 
worst
case

best 
case

…and what do we remember about 
tree operation run times? 
they scale with the tree height!



Runtime for find
Runtime for find/contains/search: 

• Worst case number of nodes to inspect: H + 1 

• Worst case number of items to inspect per node: L 

• Overall runtime: O(HL) 

Since H = Θ(log N), overall runtime is O(L log N). 

• Since L is a constant, runtime is therefore O(log N).



Runtime for insert
Runtime for insert: 

• Worst case number of nodes to inspect: H + 1 

• Worst case number of items to inspect per node: L 

• Worst case number of split operations: H + 1 

• Overall runtime: O(HL) 

Since H = Θ(log N), overall runtime is O(L log N). 

• Since L is a constant, runtime is therefore O(log N). 

Bottom line: find and insert are both O(log N).

Q: What is the run time of a split operation?

A: Constant (move pointers around)



Summary for dictionary operations
• B-trees are doing better than binary search trees! 

Worst case Average case

Search Insert Delete Search Insert Delete

BST

B-Trees

n n n log n log n n

log n log n log nlog nlog nlog n

Note, delete is out of scope 
for this class



Summary

B-Trees are a modification of the binary search tree that avoids Θ(N) worst case. 

• Nodes may contain between 1 and L items. 
• search works almost exactly like a normal BST. 
• insertion works by adding items to existing leaf nodes. 

• If nodes are too full, they split. 
• Resulting tree has perfect balance. Runtime for operations is O(log N). 
• Limitations: have not discussed deletion. Have not discussed how splitting works 

if L > 3. 
• B-trees are more complex data structures, but they can efficiently handle ANY 

insertion order.



Lecture 18 wrap-up
• No HW this week! 

• Checkpoint 2 review slides will be up in a bit 

• Checkpoint 2 is next Monday, please schedule SDRC tests

Resources
• Reading from textbook: Chapter 3.3 (Pages 424-447); https://algs4.cs.princeton.edu/

33balanced/ 

• B-tree visualization: https://yongdanielliang.github.io/animation/web/24Tree.html 
and https://www.cs.usfca.edu/~galles/visualization/BTree.html  

• Practice problems behind this slide 

• Most of these slides come from UC Berkeley’s data structures course

https://algs4.cs.princeton.edu/33balanced/
https://algs4.cs.princeton.edu/33balanced/
https://yongdanielliang.github.io/animation/web/24Tree.html
https://www.cs.usfca.edu/~galles/visualization/BTree.html


Problem 1
• Draw the 2-3-4 tree that results when you insert the keys 25, 12, 16, 13, 24, 8, 3, 18, 1, 5, 19, 20 in 

that order into an initially empty tree.



Problem 2
• Find an insertion order for the keys 1, 2, 3, 4, 5, 6, and 7 that leads to a 2-33 tree of height 1.



Problem 3
• Find an insertion order for the keys 19, 5, 1, 18, 3, 8, 24, 13 that leads to a 2-3-4 tree of height 1.



ANSWER 1
• Draw the 2-3-4 tree that results when you insert the keys 25, 12, 16, 13, 24, 8, 3, 18, 1, 5, 19, 20 in 

that order into an initially empty tree.



ANSWER 2
Find an order such that if you add the items 1, 2, 3, 4, 5, 6, and 7 in that order, the 
resulting 2-3 tree has height 1. 

• One possible answer: 2, 3, 4, 5, 6, 1, 7 

3  5

1  2 6  74



ANSWER 3
• Find an insertion order for the keys 19, 5, 1, 18, 3, 8, 24, 13 that leads to a 2-3-4 tree of height 1. 

• Example of insertion order: 5 1 13 24 18 3 8 19


