
CS62 Class 17: Left Leaning Red Black Trees
Searching

An LLRB is if you turned a 2-3 tree into a BST: if a node has multiple items,
the smaller item will be the left child with a “red” link.

Agenda
• Tree rotation

• Left-leaning Red Black Trees (LLRBs)

• 2-3 tree isometry

• Properties, search, construction

• Runtime analysis

The Bad News: B-Trees are ugly to implement
B-Trees for small L, e.g. 2-3 trees and 2-3-4 trees, are a real pain to implement, and
suffer from performance problems. Issues include:

• Maintaining different node types.
• Interconversion of nodes between 2-nodes and 3-nodes.
• Walking up the tree to split nodes.

“Beautiful algorithms are, unfortunately, not always the most useful.” - Don Knuth

public void put(Key key, Value val) {
 Node x = root;
 while (x.getTheCorrectChildKey(key) != null) {
 x = x.getTheCorrectChildKey();
 if (x.is4Node()) { x.split(); }
 }
 if (x.is2Node()) { x.make3Node(key, val); }
 if (x.is3Node()) { x.make4Node(key, val); }
}

fantasy 2-3 code via Kevin Wayne

http://www.cs.princeton.edu/courses/archive/fall18/cos226/lectures/33BalancedSearchTrees.pdf

Tree Rotation

Back to BSTs…
Suppose we have a BST with the numbers 1, 2, 3. There are five possible BSTs.

• The specific BST you get is based on the insertion order.

• More generally, for N items, there are Catalan(N) different BSTs.

1

2

3

1

3

2
3

2

1

3

1

2

3

2

1

Given any BST, it is possible to move to a different configuration using “rotation”.

● In general, can move from any configuration to any other in 2n - 6 rotations (see Rotation
Distance, Triangulations, and Hyperbolic Geometry or Amy Liu).

https://en.wikipedia.org/wiki/Catalan_number
https://www.cs.cmu.edu/~sleator/papers/rotation-distance.pdf
https://www.cs.cmu.edu/~sleator/papers/rotation-distance.pdf
https://medium.com/@liuamyj/its-triangles-all-the-way-down-part-1-17f932f4c438

Tree Rotation Definition (Demo)
rotateLeft(G): Let x be the right child of G. Make G the new left child of x.

• Preserves search tree property. No change to semantics of tree.

G

C P

k rA

B j l

I’m going left!!

Tree Rotation Definition (Demo)
rotateLeft(G): Let x be the right child of G. Make G the new left child of x.

• Preserves search tree property. No change to semantics of tree.

G

C P

k rA

B j l

I’m going left!!

I’ll be G’s new parent.

Tree Rotation Definition (Demo)
rotateLeft(G): Let x be the right child of G. Make G the new left child of x.

• Preserves search tree property. No change to semantics of tree.

G

C

P

k r

A

B

j l

I went left of P.
I am G’s new parent.

Tree Rotation Definition (Demo)
rotateLeft(G): Let x be the right child of G. Make G the new left child of x.

• Preserves search tree property. No change to semantics of tree.

G

C

P

k r

A

B

j l

I went left of P.
I am G’s new boss.

I don’t make sense.

Tree Rotation Definition (Demo)
rotateLeft(G): Let x be the right child of G. Make G the new left child of x.

• Preserves search tree property. No change to semantics of tree.

G

C

P

k r

A

B

j l

I went left of P.
I am G’s new boss.

I don’t make sense.
P has 3 children!?

Q: Where should go?k

j l

Tree Rotation Definition (Demo)
rotateLeft(G): Let x be the right child of G. Make G the new left child of x.

• Preserves search tree property. No change to semantics of tree.

G

C

P

r

A

B

I went left of P.
I am G’s new boss.

A: Where should go? To the right of G.k

j l

k

j l

I got transferred
from P to G.

Tree Rotation Definition (All in One Slide)
rotateLeft(G): Let x be the right child of G. Make G the new left child of x.

• Preserves search tree property. No change to semantics of tree.

G

C P

k rA

B j l

I’m going left!!
I went left.

I’ll be G’s new boss.

I am G’s new boss.

G

C

P

k

r

A

B

j l

For this example rotateLeft(G) increased height of tree!Rotation makes the node to be rotated a child

Tree Rotation Definition (Alternate Interpretation)
rotateLeft(G): Let x be the right child of G. Make G the new left child of x.

• Can think of as temporarily merging G and P, then sending G down and left.
• Preserves search tree property. No change to semantics of tree.

G

C P

k rA

B j l

C

k rA

B j l

G P

C k

r

A

B

j l

G

P

For this example rotateLeft(G) increased height of treeRotation makes the node to be rotated a child

Worksheet time!
rotateRight(P): Let x be the left child of P. Make P the new right child of x.

• Can think of as temporarily merging G and P, then sending P down and right.

C k r

A

B

j l

G

P What does the final tree look like after calling rotateRight(P)?

rotateRight(P): Let x be the left child of P. Make P the new right child of x.

• Can think of as temporarily merging G and P, then sending P down and right.
• Note: k was G’s right child. Now it is P’s left child.

G

C

P

k r

A

B

j l

For this example rotateRight(P) decreased height of tree!

C k r

A

B

j l

G

P

C k r

A

B

j l

G P

Worksheet answers

Tree Balancing

Rotation for Balance
Rotation:

• Can shorten (or lengthen) a tree.
• Preserves search tree property.

D

B

rotateRight(D)

rotateLeft(B)

>D

> B and < D< B

D

B

>D

> B and < D< B

Rotation for Balance
Rotation:

• Can shorten (or lengthen) a tree.
• Preserves search tree property.

D

B

rotateRight(D)

rotateLeft(B)

>D

> B and < D< B

D

B

>D

> B and < D< B

Can use rotation to balance a BST.

● Rotation allows balancing of a BST in O(N) moves.

Demo: Balancing with Tree Rotation

4

1

6

13

9

17

8

Demo: Balancing with Tree Rotation

4

1

6

13

9

17

8

rotateLeft(9)

Demo: Balancing with Tree Rotation

4

1

6

17

13

9

8

Demo: Balancing with Tree Rotation

4

1

6

17

13

9

8

rotateLeft(6)

Demo: Balancing with Tree Rotation

1

6

8

17

13

9

4

Demo: Balancing with Tree Rotation

1

6

8

17

13

9

4

rotateLeft(1)

Demo: Balancing with Tree Rotation

4

6

8

17

13

9

1

Demo: Balancing with Tree Rotation

4

6

8

17

13

9

1

rotateRight(6)

Demo: Balancing with Tree Rotation

1

4

8

17

13

96

Demo: Balancing with Tree Rotation

1

4

8

17

13

96

4

1

6

13

9

17

8
rotateLeft(9)
rotateLeft(6)
rotateLeft(1)
rotateRight(6)

Worksheet time!
Give a sequence of rotation operations that balances the tree on the left.

1

3

2
3

2

1

Worksheet answers

1

3

2
3

2

1

1

2

3

There are other correct answers as well!

Give a sequence of rotation operations that balances the tree on the left.

• rotateRight(3)

• rotateLeft(1)

Some Rotations are Undefined

4

1 rotateRight(1)
???

• Rotating a node right is undefined if that node has no left child.

• We would need to promote that node's left child, but it doesn't exist.

• Rotating a node left is undefined if that node has no right child.

• We won't need to perform any undefined rotations in this lecture, so don't worry
about them.

Rotation: An Alternate Approach to Balance
Rotation:

• Can shorten (or lengthen) a tree.
• Preserves search tree property.

D

B

rotateRight(D)

rotateLeft(B)

>D

> B and < D< B

D

B

>D

> B and < D< B

Paying O(n) to occasionally balance a BST is not ideal. In this lecture, we’ll see a better
way to achieve balance through rotation: Left-leaning red black trees (LLRB)s.

LLRBs:
isometry with 2-3 trees

Search Trees
There are many types of search trees:

• Binary search trees: Can balance using rotation, but we have no algorithm for
doing so (yet).

• 2-3 trees: Balanced by construction, i.e. no rotations required.

Let’s try something clever, but strange.

Our goal: Build a BST that is structurally identical to a 2-3 tree.

• Since 2-3 trees are balanced, so will our special BSTs.

• With a BST, it’s easier to implement, since we only have 1 type of node with left/
right links.

Representing a 2-3 Tree as a BST
A 2-3 tree with only 2-nodes requires no special work.

• BST is exactly the same!

What do we do about 3-nodes?

e

b g

o

n p

m

d f

b g

o

n p

m

e

e

b g

o

n p

m

????

Representing a 2-3 Tree as a BST: Dealing with 3-Nodes
Possibility 1: Create dummy “glue” nodes.

d f

b g

o

n p

m

e

o

n p

m

b ge

d f

d f
d f

Result is inelegant. Wasted link. Code will be ugly.

Representing a 2-3 Tree as a BST: Dealing with 3-Nodes
Possibility 2: Create “glue” links with the smaller item off to the left.

d f

b g

o

n p

m

e

o

n p

m

d

f

d f

Idea is commonly used in practice (e.g. java.util.TreeSet).

e

g

b

d

f

For convenience, we’ll mark glue links as “red”.

Left-Leaning Red Black Binary Search Tree (LLRB)
A BST with left glue links that represents a 2-3 tree is often called a “Left Leaning
Red Black Binary Search Tree” or LLRB.

• LLRBs are normal BSTs!
• There is a 1-1 correspondence between an LLRB and an equivalent 2-3 tree.
• The red is just a convenient fiction. Red links don’t “do” anything special.

Worksheet time!
Draw the LLRB corresponding to the 2-3 tree shown below.

x ya s v

u w

Worksheet answers
Draw the LLRB corresponding to the 2-3 tree shown below.

x ya s v

u w

s v

u

w

x

y

a

LLRBs:
Properties

Valid LLRBs?
How many of these are valid LLRBs, i.e. have a 1-1 correspondence with a valid 2-3
tree? Talk with your neighbor. (Hint: draw them as 2-3 trees)

G

B X

A C

G

B X

A C

G

B X

A C

G

C X

A

B

Valid LLRBs?
How many of these are valid LLRBs, i.e. have a 1-1 correspondence with a valid 2-3
tree? Talk with your neighbor. (Hint: draw them as 2-3 trees)

G

B X

A C

G

B X

A C

G

B X

A C

G

C X

A

B

G

A B C X

G

A B X

C

G

B X

A C

B G

XA C
Invalid, has 4 node. Invalid, not balanced. Invalid, not balanced.

2-3 tree equivalent

Valid!

LLRB height
How tall is the corresponding LLRB for the 2-3 tree below? (3 - nodes in pink)

D E P

B G J N

Q R V WA C F H I K M O

S U

T

L

How tall is the corresponding LLRB for the 2-3 tree below? (3 - nodes in pink)

• Each 3-node becomes two nodes in the LLRB.

• Total height is 3 (black) + 2 (red) = 5.

• More generally, an LLRB has no more than ~2x the height of its 2-3 tree.

L

P

U

S

R

Q

D E P

B G J N

Q R V WA C F H I K M O

S U

T

L

Dark line shows longest path (3 links).

3 black links
2 red links

L

P

U

S

R

Q

D E P

B G J N

Q R V WA C F H I K M O

S U

T

L

Dark line shows longest path (3 links).

3 black links
2 red links

LLRB Balance
Because 2-3 trees have logarithmic height, and the corresponding LLRB has height
that is never more than ~2 times the 2-3 tree height, LLRBs also have logarithmic
height!

Left-Leaning Red Black Binary Search Tree (LLRB)
Properties
Some handy LLRB properties/invariants:

• No node has two red links [otherwise it’d be analogous to a 4 node, which are
disallowed in 2-3 trees].

• Every path from root to null has same number of black links (because 2-3 trees
have the same number of links to every leaf). LLRBs are therefore balanced.

Searching
Searching for a key in a LLRB is exactly like searching for it in any BST.

s v

u

w

x

y

a

contains(b)

• b < w, go left

• b < u, go left

• b < s, go left

• b > a, go right

• null node, b does not exist

Runtime? O(logn), because height of the LLRB is log(n).

LLRB Construction algorithm
One last important question: Where do LLRBs come from?

• Would not make sense to build a 2-3 tree, then convert. Even more complex.

• Instead, it turns out we implement an LLRB insert as follows:

• Insert as usual into a BST.

• Use zero or more rotations to maintain the 1-1 mapping.

The 1-1 Mapping
There exists a 1-1 mapping between:

• 2-3 Tree
• LLRB

Implementation of an LLRB is based on maintaining this 1-1 correspondence.

• When performing LLRB operations, pretend like you’re a 2-3 tree.
• Preservation of the correspondence will involve tree rotations.

Insertion rules

Design Task #1: Insertion Color
Should we use a red or black link when inserting E to a tree that just contains S?

S
S

E

S

E

S E S

LLRB World

World 2-3

add(E)

add(E)

add(E)

Design Task #1: Insertion Color
Should we use a red or black link when inserting?

• Use red! In 2-3 trees new values are ALWAYS added to a leaf node (at first).

S
S

E

S

E

S E S

LLRB World

add(E)

add(E)

add(E)

World 2-3

Design Task #2: Insertion on the Right
Suppose we have leaf E, and insert S with a red link. What is the problem below, and
what do we do about it?

B

A E

B

A E S

B

A E

B

A E

S

LLRB World

add(S)

add(S)

World 2-3

Design Task #2: Insertion on the Right
Suppose we have leaf E, and insert S with a red link. What is the problem below, and
what do we do about it: Right links aren’t allowed. What rotation fixes this?

B

A E

B

A E S

B

A E

B

A E

S

LLRB World

add(S)

add(S)

World 2-3

B

A S

E
Hint: This is the correct
representation of the 2-3
tree.

What rotation operation
gives us this tree?

Design Task #2: Insertion on the Right
Suppose we have leaf E, and insert S with a red link. What is the problem below, and
what do we do about it: Right links aren’t allowed, so rotateLeft(E).

B

A E

B

A E S

B

A E

B

A E

S

B

A S

E

LLRB World

add(S) rotateLeft(E)

add(S)

World 2-3

New Rule: Representation of Temporary 4-Nodes
We will represent temporary 4-nodes (before we split and bubble up the middle
element) as BST nodes with two red links.
• This state is only temporary, so temporary violation of “left leaning” is OK.

B

A E S

B

A E S Z

LLRB World

B

A S

E

B

A S

E Z

add(Z)

add(Z)

Represents
temporary 4 nodes.
Temporarily violates
“no red right links”.

Temporarily violates
“no 4 nodes”.

World 2-3

Design Task #3: Double Insertion on the Left
Suppose we have the LLRB below and insert E. We end up with the wrong
representation for our temporary 4 node. What rotation should we do so that the
temporary 4 node has 2 red children (one left, one right) as expected?

LLRB World

World 2-3

B

A S Z

B

A E S Z

B

A Z

S

B

A Z

S

E

add(E)

add(E)

Design Task #3: Double Insertion on the Left
Suppose we have the LLRB below and insert E. We end up with the wrong
representation for our temporary 4 node. What rotation should we do so that the
temporary 4 node has 2 red children (one left, one right) as expected?

LLRB World

World 2-3

B

A S Z

B

A E S Z

B

A Z

S

B

A Z

S

E

add(E)

add(E)

B

A S

E Z
Hint: This is the correct
representation of the 2-3
tree.

What rotation operation
gives us this tree?

Design Task #3: Double Insertion on the Left
Suppose we have the LLRB below and insert E. We end up with the wrong
representation for our temporary 4 node. What should we do?
• Rotate Z right.

LLRB World

World 2-3

B

A S Z

B

A E S Z

B

A Z

S

B

A Z

S

E

B

A S

E Z

rotateRight(Z)add(E)

add(E)

Design Task #4: Splitting Temporary 4-Nodes
Suppose we have the LLRB below which includes a temporary 4 node. What should
we do next?

LLRB World

World 2-3

G

A B C X

split(A/B/C) B G

XA C

G

B X

A C

Hint: Ask yourself “What Would
2-3 Tree Do?” WW23TD?

Design Task #4: Splitting Temporary 4-Nodes
Suppose we have the LLRB below which includes a temporary 4 node. What should
we do next?

LLRB World

World 2-3

G

A B C X

split(A/B/C) B G

XA C

G

B X

A C

Hint: Ask yourself “What Would
2-3 Tree Do?” WW23TD?

G

B X

A C

Hint2: This is the correct
representation of the 2-3 tree.
How do we get this tree?

Hint3: We don’t need rotation.

Design Task #4: Splitting Temporary 4-Nodes
Suppose we have the LLRB below which includes a temporary 4 node. What should
we do next?
• Flip the colors of all edges touching B.

• Note: This doesn’t change the BST structure/shape.

LLRB World

World 2-3

G

A B C X

split(A/B/C) B G

XA C

G

B X

A C

flip(B)
G

B X

A C

… and That’s It!
Congratulations, you just invented the red-black BST.

• When inserting: Use a red link.

• If there is a right leaning “3-node”, we have a Left Leaning Violation.

• Rotate left the appropriate node to fix.

• If there are two consecutive left links, we have an Incorrect 4 Node Violation.

• Rotate right the appropriate node to fix.

• If there are any nodes with two red children, we have a Temporary 4 Node.

• Color flip the node to emulate the split operation.

One last detail: Cascading operations.

• It is possible that a rotation or flip operation will cause an additional violation that needs fixing.

Worksheet time!
Inserting Z gives us a temporary 4 node.
• To fix it, we color flip. But this yields an invalid tree.
• What is the violation that has occurred? How can we fix it?

B

A E S

B

A E S Z

B

A S

E

LLRB World

World 2-3

B

A S

E Z

B

A S

E Z

B S

A E Z

add(Z) flip(S)

add(Z) split(E/S/Z)

Worksheet answers
• What is the violation that has occurred? -> We have a right-leaning 3 node (B-S).
• How can we fix it? -> RotateLeft(B).

LLRB World

World 2-3

B

A S

E Z

B S

A E Z

B

A

S

E

Z
rotateLeft(B)

Runtime analysis

LLRB Runtime
The runtime analysis for LLRBs is simple if you trust the 2-3 tree runtime, since
they’re isometric.

• LLRB tree has height O(log N).

• Contains is trivially O(log N).

• Insert is O(log N).

• O(log N) to add the new node.

• O(log N) rotation and color flip operations per insert.

‣ Rotation and color flip operations are constant time.

We will not discuss LLRB delete.

Search Trees
In the last 3 lectures, we talked about using search trees to implement dictionaries/maps.

• Binary search trees are simple, but they are subject to imbalance.

• 2-3 Trees (B Trees) are balanced, but painful to implement and relatively slow.

• LLRBs insertion is simple to implement (but delete is hard).

• Works by maintaining mathematical bijection with a 2-3 trees.

• Java’s TreeMap (built in dictionaries) is a red-black tree (not left leaning).

• Maintains correspondence with 2-3-4 tree (is not a 1-1 correspondence).

• Allows glue links on either side (see Red-Black Tree).

• More complex implementation, but significantly (?) faster.

https://github.com/AdoptOpenJDK/openjdk-jdk11/blob/999dbd4192d0f819cb5224f26e9e7fa75ca6f289/src/java.base/share/classes/java/util/TreeMap.java
http://en.wikipedia.org/wiki/Red%E2%80%93black_tree

Summary for dictionary operations

Worst case Average case

Search Insert Delete Search Insert Delete

BST

B-Trees and
Red Black

Trees

n n n log n log n n

log n log n log nlog nlog nlog n

… and Beyond
There are many other types of search trees out there.

• Other self balancing trees: AVL trees, splay trees, treaps, etc. There are at least
hundreds of different such trees.

And there are other efficient ways to implement sets and maps entirely.

• Other linked structures: Skip lists are linked lists with express lanes.

• Other ideas entirely: Hashing is the most common alternative. We’ll discuss this
very important idea in our next lecture.

Lecture 17 wrap-up
• Checkpoint 2 next Monday! You can have a cheat sheet like the first one

• No HW next week!

• Reminder: Declare the CS major!

Resources
• Tree history: https://cs.pomona.edu/classes/cs62/history/trees/

• Reading from textbook: Chapter 3.3 (Pages 424-447); https://algs4.cs.princeton.edu/33balanced/

• LLRB visualization: https://algs4.cs.princeton.edu/GrowingTree/

• Red Black visualization (slightly different than LLRB): https://ds2-iiith.vlabs.ac.in/exp/red-black-
tree/red-black-tree-oprations/simulation/redblack.html

• Practice problems behind this slide

• Most of these slides come from UC Berkeley’s data structures course

https://cs.pomona.edu/classes/cs62/history/trees/
https://algs4.cs.princeton.edu/33balanced/
https://algs4.cs.princeton.edu/GrowingTree/
https://ds2-iiith.vlabs.ac.in/exp/red-black-tree/red-black-tree-oprations/simulation/redblack.html
https://ds2-iiith.vlabs.ac.in/exp/red-black-tree/red-black-tree-oprations/simulation/redblack.html
https://ds2-iiith.vlabs.ac.in/exp/red-black-tree/red-black-tree-oprations/simulation/redblack.html

Practice problem 1
Insert 7, 6, 5, 4, 3, 2, 1, into an initially empty LLRB. Make sure to draw the tree out
at each iteration.
Hint: You should end up with a perfectly balanced BST!

Practice problem 2
Draw the left-leaning red-black BST that results when you
insert items with the keys E, A, S, Y, Q, U, E, S, T, I, O, N in that
order into an initially empty tree.

Practice solution 1

To check your work, see this demo (credit to Josh Hug @ UC Berkeley).
• Or see this video walkthrough of solution.

2

1 3

6

5 7

4

LLRB world 2-3 tree world (same!)

2

1 3

6

5 7

4

https://docs.google.com/presentation/d/1jgOgvx8tyu_LQ5Y21k4wYLffwp84putW8iD7_EerQmI/edit?usp=sharing
https://www.youtube.com/watch?v=JwZU-uaNEMg&list=PL8FaHk7qbOD6aKgTz2W-foDiTeBEaBoS3&index=7

Practice solution 2

