CS62 Class 17: Left Leaning Red Black Trees
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An LLRB is if you turned a 2-3 tree into a BST: if a node has multiple items,
the smaller item will be the left child with a “red” link.



Agenda

* Tree rotation

* Left-leaning Red Black Trees (LLRBS)
° 2-3 tree isometry
* Properties, search, construction

* Runtime analysis



The Bad News: B-Trees are ugly to implement

B-Trees for small L, e.g. 2-3 trees and 2-3-4 trees, are a real pain to implement, and
suffer from performance problems. Issues include:

+ Maintaining different node types.
* Interconversion of nodes between 2-nodes and 3-nodes.
- Walking up the tree to split nodes.

public void put(Key key, Value val) { fantasy 2-3 code via Kevin Wayne
Node X = root;
while (x.getTheCorrectChildKey(key) != null) {
X = X.getTheCorrectChildKey();
if (xX.1s4Node()) { x.split(); }

}
if (x.1s2Node()) { x.make3Node(key, val); }

if (x.1s3Node()) { x.makedNode(key, val); }

“Beautiful algorithms are, unfortunately, not always the most useful.” - Don Knuth


http://www.cs.princeton.edu/courses/archive/fall18/cos226/lectures/33BalancedSearchTrees.pdf

Tree Rotation



Back to BSTs...

Suppose we have a BST with the numbers 1, 2, 3. There are five possible BSTs.

» The specific BST you get is based on the insertion order.

» More generally, for N items, there are Catalan(N) different BSTs.

Given any BST, it is possible to move to a different configuration using “rotation”.
e In general, can move from any configuration to any other in 2n - 6 rotations (see Rotation

Distance, Triangulations, and Hyperbolic Geometry or Amy Liu).


https://en.wikipedia.org/wiki/Catalan_number
https://www.cs.cmu.edu/~sleator/papers/rotation-distance.pdf
https://www.cs.cmu.edu/~sleator/papers/rotation-distance.pdf
https://medium.com/@liuamyj/its-triangles-all-the-way-down-part-1-17f932f4c438

Tree Rotation Definition (Demo)

rotatelLeft(G): Let x be the right child of G. Make G the new left child of x.

* Preserves search tree property. No change to semantics of tree.

I'm going left!!
-
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Tree Rotation Definition (Demo)

rotatelLeft(G): Let x be the right child of G. Make G the new left child of x.

* Preserves search tree property. No change to semantics of tree.

I'm going left!!
—
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Tree Rotation Definition (Demo)

rotatelLeft(G): Let x be the right child of G. Make G the new left child of x.

* Preserves search tree property. No change to semantics of tree.

| am G’s new parent.

| went left of P.

P




Tree Rotation Definition (Demo)

rotatelLeft(G): Let x be the right child of G. Make G the new left child of x.

* Preserves search tree property. No change to semantics of tree.

| went left of P.

| don't make sense. /EI

| am G’s new boss.




Tree Rotation Definition (Demo)

rotatelLeft(G): Let x be the right child of G. Make G the new left child of x.

* Preserves search tree property. No change to semantics of tree.

| went left of P.

| don't make sense.
P has 3 children!?
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| am G’s new boss.
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Tree Rotation Definition (Demo)

rotatelLeft(G): Let x be the right child of G. Make G the new left child of x.

* Preserves search tree property. No change to semantics of tree.

| am G’s new boss.

| went left of P.

| got transferred

/ \ from P to G.

/ / \
m A: Where should go? To the right of G.
\ /  \

SEREN



Tree Rotation Definition (All in One Slide)

rotatelLeft(G): Let x be the right child of G. Make G the new left child of x.

» Preserves search tree property. No change to semantics of tree.

| am G’s new boss.
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Rotation makes the node to be rotated a child For this example rotateLeft(G) increased height of tree!



Tree Rotation Definition (Alternate Interpretation)

rotateLeft(QG): Let x be the right child of G. Make G the new left child of x.

 Can think of as temporarily merging G and P, then sending G down and left.
* Preserves search tree property. No change to semantics of tree.
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Rotation makes the node to be rotated a child For this example rotateLeft(G) increased height of tree



Worksheet time!

rotateRight(P): Let x be the left child of P. Make P the new right child of x.

» Can think of as temporarily merging G and P, then sending P down and right.

ﬂ What does the final tree look like after calling rotateRight(P)?



Worksheet answers

rotateRight(P): Let x be the left child of P. Make P the new right child of x.

» Can think of as temporarily merging G and P, then sending P down and right.
» Note: k was G's right child. Now it is P’s Ieft child.
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For this example rotateRight(P) decreased height of tree!



Tree Balancing



Rotation for Balance

Rotation:

» (Can shorten (or lengthen) a tree.
*  Preserves search tree property.

-/-\ rotatenght(D)

rotateLeft(B)
< B > B and <D
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Rotation for Balance

Rotation:

» (Can shorten (or lengthen) a tree.
*  Preserves search tree property.

-/-\ rotate nght(D) /

e ——————

rotateLeft(B)
<B >Band <D >Band <D

Can use rotation to balance a BST.

e Rotation allows balancing of a BST in O(N) moves.



Demo: Balancing with Tree Rotation



Demo: Balancing with Tree Rotation



Demo: Balancing with Tree Rotation



Demo: Balancing with Tree Rotation

IZI rotatelLeft(6)
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Demo: Balancing with Tree Rotation
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Demo: Balancing with Tree Rotation
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Demo: Balancing with Tree Rotation
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Demo: Balancing with Tree Rotation
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Demo: Balancing with Tree Rotation
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Demo: Balancing with Tree Rotation

rotate
rotate
rotate
rotate

_eft(9)
_eft(6)
eft(1)

;ight(6)



Worksheet time!

Give a sequence of rotation operations that balances the tree on the left.




Worksheet answers

Give a sequence of rotation operations that balances the tree on the left.
» rotateRight(3)
« rotatelLeft(1)

There are other correct answers as well!



Some Rotations are Undefined

+ Rotating a node right is undefined if that node has no left child.
» We would need to promote that node's left child, but it doesn't exist.
+ Rotating a node left is undefined if that node has no right child.

- We won't need to perform any undefined rotations in this lecture, so don't worry
about them.

rotateRight(1)

\ - 277



Rotation: An Alternate Approach to Balance

Rotation:

Can shorten (or lengthen) a tree.
* Preserves search tree property.

-/-\ rotate nght(D) /

rotateLeft(B)
<B >Band<D >Band <D

Paying O(n) to occasionally balance a BST is not ideal. In this lecture, we'll see a better
way to achieve balance through rotation: Left-leaning red black trees (LLRB)s.



LLRBs:
iIsometry with 2-3 trees




Search Trees

There are many types of search trees:

* Binary search trees: Can balance using rotation, but we have no algorithm for
doing so (yet).

» 2-3 trees: Balanced by construction, i.e. no rotations required.
Let's try something clever, but strange.

Our goal: Build a BST that is structurally identical to a 2-3 tree.
» Since 2-3 trees are balanced, so will our special BSTs.

» With a BST, it's easier to implement, since we only have 1 type of node with left/
right links.



Representing a 2-3 Tree as a BST

A 2-3 tree with only 2-nodes requires no special work.

» BST is exactly the same!

e o
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What do we do about 3-nodes?

> 277?




Representing a 2-3 Tree as a BST: Dealing with 3-Nodes

Possibility 1: Create dummy “glue” nodes.

Result is inelegant. Wasted link. Code will be ugly.
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Representing a 2-3 Tree as a BST: Dealing with 3-Nodes

Possibility 2: Create “glue” links with the smaller item off to the left.

ldea is commonly used in practice (e.g. java.util.TreeSet).
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For convenience, we'll mark glue links as “red”. -



Left-Leaning Red Black Binary Search Tree (LLRB)

A BST with left glue links that represents a 2-3 tree is often called a “Left Leaning
Red Black Binary Search Tree” or LLRB.

* LLRBs are normal BSTSs!
» Thereis a 1-1 correspondence between an LLRB and an equivalent 2-3 tree.
» The red is just a convenient fiction. Red links don’t “do” anything special.
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2-3 tree corresponding red-black BST



Worksheet time!

Draw the LLRB corresponding to the 2-3 tree shown below.




Worksheet answers

Draw the LLRB corresponding to the 2-3 tree shown below.




LLRBSs:
Properties



Valid LLRBs?

How many of these are valid LLRBs, i.e. have a 1-1 correspondence with a valid 2-3
tree? Talk with your neighbor. (Hint: draw them as 2-3 trees)
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Valid LLRBs?

How many of these are valid LLRBs, i.e. have a 1-1 correspondence with a valid 2-3
tree? Talk with your neighbor. (Hint: draw them as 2-3 trees)

2-3 tree equivalent
\ / N\
©) m
7\ VLN
= ©

Invalid, has 4 node. Invalid, not balanced. Invalid, not balanced. Valid!



LLRB height

How tall is the corresponding LLRB for the 2-3 tree below? (3 - nodes in pink)

ANATYANEYA /I\
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How tall is the corresponding LLRB for the 2-3 tree below? (3 - nodes in pink)

» Each 3-node becomes two nodes in the LLRB.

+ Total height is 3 (black) + 2 (red) =

* More generally, an LLRB has no more than ~2x the height of its 2-3 tree.

3 black links
2 red links /

ATATYANYA /I\
Allel[FIH[ L[] [mi[o] [aR|[T][vw

Dark line shows longest path (3 links).




LLRB Balance

Because 2-3 trees have logarithmic height, and the corresponding LLRB has height
that is never more than ~2 times the 2-3 tree height, LLRBs also have logarithmic
height!

3 black links
2 red links /

ATATYANYA /I\
Allel[FIH[ L[] [mi[o] [aR|[T][vw

Dark line shows longest path (3 links).




Left-Leaning Red Black Binary Search Tree (LLRB)
Properties

Some handy LLRB properties/invariants:

* No node has two red links [otherwise it'd be analogous to a 4 node, which are

disallowed in 2-3 trees].

* Every path from root to null has same number of black links (because 2-3 trees
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have the same number of links to every leaf). LLRBs are therefore balanced.
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Searching

Searching for a key in a LLRB is exactly like searching for it in any BST.

contains(b)

* b <w, go left
* b <u, goleft
* b<s, goleft

* b>a, goright

* null node, b does not exist

Runtime? O(logn), because height of the LLRB is log(n).



LLRB Construction algorithm

One last important question: Where do LLRBs come from?

» Would not make sense to build a 2-3 tree, then convert. Even more complex.
* Instead, it turns out we implement an LLRB insert as follows:

* |Insert as usual into a BST.

» Use zero or more rotations to maintain the 1-1 mapping.

. | ) black links connect
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The 1-1 Mapping 2-3 tree m

There exists a 1-1 mapping between: = R)
« 2-3T
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Implementation of an LLRB is based on maintaining this 1-1 correspondence.

* When performing LLRB operations, pretend like you're a 2-3 tree.
* Preservation of the correspondence will involve tree rotations.



Insertion rules




Design Task #1: Insertion Color

Should we use a red or black link when inserting E to a tree that just contains S?

World 2-3



Design Task #1: Insertion Color

Should we use a red or black link when inserting?

« Use red! In 2-3 trees new values are ALWAYS added to a leaf node (at first).

World 2-3



Design Task #2: Insertion on the Right

Suppose we have leaf E, and insert S with a red link. What is the problem below, and
what do we do about it?

2dd©)
/ N\

LLRB World

World 2-3



Design Task #2: Insertion on the Right

Suppose we have leaf E, and insert S with a red link. What is the problem below, and
what do we do about it: Right links aren't allowed. What rotation fixes this?

Hint: This is the correct
representation of the 2-3
tree.

ks e e




Design Task #2: Insertion on the Right

Suppose we have leaf E, and insert S with a red link. What is the problem below, and
what do we do about it: Right links aren’t allowed, so rotateLeft(E).

add(S) rotatelLeft(E)

v

/ N\ / N\ /7 N\
\ /

LLRB World

World 2-3



New Rule: Representation of Temporary 4-Nodes

We will represent temporary 4-nodes (before we split and bubble up the middle
element) as BST nodes with two red links.
 This state is only temporary, so temporary violation of “left leaning” is OK.

/ \ add(Z) Represents
> - - / temporary 4 nodes.
“no red right links".

Temporarl y violates

LLRB World

Temporarily violates
“no 4 nodes”.

World 2-3




Desigh Task #3: Double Insertion on the Left

Suppose we have the LLRB below and insert E. We end up with the wrong
representation for our temporary 4 node. What rotation should we do so that the
temporary 4 node has 2 red children (one left, one right) as expected?

/N add(E) /7 N\
'
/ /
4
R O
add(E) B

ESZ




Desigh Task #3: Double Insertion on the Left

Suppose we have the LLRB below and insert E. We end up with the wrong
representation for our temporary 4 node. What rotation should we do so that the

temporary 4 node has 2 red children (one left, one right) as expected?

a add(E) 7/ N\
'
/ /

/ Hint: This is the correct

representation of the 2-3
LLRB World tree.
B What rotation operation

gives us this tree?

ESZ




Design Task #3: Double Insertion on the Left

Suppose we have the LLRB below and insert E. We end up with the wrong
representation for our temporary 4 node. What should we do?
» Rotate Z right.

a add(E) /N rotateRight(2) a
’ :
/ /7 \
/4
add(E) B

ESZ




Desigh Task #4: Splitting Temporary 4-Nodes

Suppose we have the LLRB below which includes a temporary 4 node. What should
we do next?

Hint: Ask yourself “What Would

2-3 Tree Do?" WW23TD?
/ \ i
/7 \

LLRB World

split(A/B/C)

>

World 2-3




Desigh Task #4: Splitting Temporary 4-Nodes

Suppose we have the LLRB below which includes a temporary 4 node. What should
we do next?

int: Ask yourself “What Would NP
5.3 Tree Do?" WW23TD? Hint2: This |§ the correct
representation of the 2-3 tree.

How do we get this tree?
N /. N\

,

/7 \

7\ Hint3: We don't need rotation.
LLRB World

split(A/B/C)

>

World 2-3




Desigh Task #4: Splitting Temporary 4-Nodes

Suppose we have the LLRB below which includes a temporary 4 node. What should
we do next?
* Flip the colors of all edges touching B.

» Note: This doesn't change the BST structure/shape.

/ N\ fipB) 7 N\
/ \ /\

LLRB World

split(A/B/C)

>

World 2-3




... and That’s It!

Congratulations, you just invented the red-black BST.
» When inserting: Use a red link.
* |f there is a right leaning “3-node”, we have a Left Leaning Violation.

- Rotate left the appropriate node to fix.

* |If there are two consecutive left links, we have an Incorrect 4 Node Violation.

- Rotate right the appropriate node to fix.

» If there are any nodes with two red children, we have a Temporary 4 Node.

» Color flip the node to emulate the split operation.

One last detail: Cascading operations.

» |t is possible that a rotation or flip operation will cause an additional violation that needs fixing.



Worksheet time!

Inserting Z gives us a temporary 4 node.
» To fix it, we color flip. But this yields an invalid tree.
- What is the violation that has occurred? How can we fix it?

a add(2) o flip(S) a8
: »
/ / \

LLRB World

add(Z) / split(E/S/Z)

g LR
World 2-3 ESZ




Worksheet answers

- What is the violation that has occurred? -> We have a right-leaning 3 node (B-S).
- How can we fix it? -> RotateLeft(B).

/ N rotatelLeft(B) / \
:
A (s
R O e
VLR

World 2-3



Runtime analysis




LLRB Runtime

The runtime analysis for LLRBs is simple if you trust the 2-3 tree runtime, since
they're isometric.

* LLRB tree has height O(log N).
+ Contains is trivially O(log N).
* Insert is O(log N).
* O(log N) to add the new node.
* O(log N) rotation and color flip operations per insert.

> Rotation and color flip operations are constant time.

We will not discuss LLRB delete.



Search Trees

In the last 3 lectures, we talked about using search trees to implement dictionaries/maps.
* Binary search trees are simple, but they are subject to imbalance.
» 2-3 Trees (B Trees) are balanced, but painful to implement and relatively slow.
* LLRBs insertion is simple to implement (but delete is hard).
+ Works by maintaining mathematical bijection with a 2-3 trees.

» Java's TreeMap (built in dictionaries) is a red-black tree (not left leaning).

» Maintains correspondence with 2-3-4 tree (is not a 1-1 correspondence).

 Allows glue links on either side (see Red-Black Tree).

- More complex implementation, but significantly (?) faster.


https://github.com/AdoptOpenJDK/openjdk-jdk11/blob/999dbd4192d0f819cb5224f26e9e7fa75ca6f289/src/java.base/share/classes/java/util/TreeMap.java
http://en.wikipedia.org/wiki/Red%E2%80%93black_tree

Summary for dictionary operations

Worst case Average case
Search Insert Delete Search Insert Delete
BST
n n n logn logn \/Z
B-Treesand = oo p logn log n logn logn log n
Red Black

Trees




... and Beyond

There are many other types of search trees out there.

» Other self balancing trees: AVL trees, splay trees, treaps, etc. There are at least
hundreds of different such trees.

And there are other efficient ways to implement sets and maps entirely.
» Other linked structures: Skip lists are linked lists with express lanes.

* Other ideas entirely: Hashing is the most common alternative. We'll discuss this
very important idea in our next lecture.



Lecture 17 wrap-up

» Checkpoint 2 next Monday! You can have a cheat sheet like the first one
* No HW next week!

» Reminder: Declare the CS major!

Resources

* Tree history: https://cs.pomona.edu/classes/cs62/history/trees/

* Reading from textbook: Chapter 3.3 (Pages 424-447); https://algs4.cs.princeton.edu/33balanced/

* LLRB visualization: https://algs4d.cs.princeton.edu/Growinglree/

* Red Black visualization (slightly different than LLRB): https://ds2-iiith.vlabs.ac.in/exp/red-black-
tree/red-black-tree-oprations/simulation/redblack.html

* Practice problems behind this slide

* Most of these slides come from UC Berkeley’s data structures course


https://cs.pomona.edu/classes/cs62/history/trees/
https://algs4.cs.princeton.edu/33balanced/
https://algs4.cs.princeton.edu/GrowingTree/
https://ds2-iiith.vlabs.ac.in/exp/red-black-tree/red-black-tree-oprations/simulation/redblack.html
https://ds2-iiith.vlabs.ac.in/exp/red-black-tree/red-black-tree-oprations/simulation/redblack.html
https://ds2-iiith.vlabs.ac.in/exp/red-black-tree/red-black-tree-oprations/simulation/redblack.html

Practice problem 1

Insert /7, 6, 5,4, 3, 2,1, into an initially empty LLRB. Make sure to draw the tree out
at each iteration.
Hint: You should end up with a perfectly balanced BST!



Practice problem 2

Draw the left-leaning red-black BST that results when you
insert items with the keys E, A, S, Y, Q, U, E, S, T, I, O, Nin that
order into an initially empty tree.



Practice solution 1

To check your work, see this demo (credit to Josh Hug @ UC Berkeley).
* Or see this video walkthrough of solution.

/N T\ /N T\

LLRB world 2-3 tree world (same!)


https://docs.google.com/presentation/d/1jgOgvx8tyu_LQ5Y21k4wYLffwp84putW8iD7_EerQmI/edit?usp=sharing
https://www.youtube.com/watch?v=JwZU-uaNEMg&list=PL8FaHk7qbOD6aKgTz2W-foDiTeBEaBoS3&index=7

Practice solution 2




