
CS62 Class 1: Intro & Java basics

Slides adopted from Prof. Papoutsaki. Thanks!

Slide deck: https://cs.pomona.edu/classes/cs62/#schedule

Java Fundamentals

https://cs.pomona.edu/classes/cs62/#schedule

Class 1 agenda
• Course overview. What will you learn?

• Course intros

• Getting started in Java

• Variables

• Print statements

• Classes and Objects in Java

Course overview

Please use the course website!!
https://cs.pomona.edu/classes/cs62/

https://cs.pomona.edu/classes/cs62/

What is a data structure?

What is a data structure?

• Data structures are abstractions that help us efficiently organize and store
data while writing code.

• Data structures you’ve seen in CS51P

• Lists

• Dictionaries

• In this class, we’ll actually implement the data structures ourselves, as well as
apply built-in ones to solve software engineering problems

• We’ll understand what “efficiently” means (and talk about other metrics that
are just as important!)

Course thirds
1 2 3

• Reviewing CS51P concepts
in Java

• New OOP concepts
• Inheritance
• Interfaces, generics

• Basic data structures (DS):
• ArrayLists
• Run time & affordance

analysis
• Linked lists (single &

doubly)
• Stacks & queues

Java & Basic DS Sorting &
Searching Graphs & SWE

• Algorithms:
• Selection & insertion sort
• Mergesort
• Quicksort
• Heapsort

• Data structures:
• Trees (binary search, 2-3,

red-black…)
• Priority queues, heaps
• Dictionaries
• Hashtables
• Abstract data types

• Data structures:
• Graphs

• Algorithms:
• Shortest path in a

graph
• Minimum spanning

trees
• Final SWE project

• Human-centered
design methods for
software engineering

• Careers panel

…and one checkpoint
for each third :)

Learning goals
• Understand how data structures work and how to implement them yourself

• Understand the time-complexity analysis of algorithms, as well as
affordance analysis to understand their ethical trade offs and their history

• Be able to write long, complex, modular, understandable programs (> 1k
lines of code) in the OOP (object-oriented programming) paradigm

• Be able to choose the best data structure for an open-ended, real world
problem and implement a working solution (final project)

• Feel confident in interviewing for SWE internships (e.g., solve Leetcode
problems)

Course assignments + weekly flow
• In CS62, unlike in CS51P, assignments and labs are different.

• You have 10 labs (to be completed during the Wednesday night lab), and 10
programming assignments

• Labs are meant to teach SWE skills (command line, Git, debugging, etc.)

• Assignments are released in lab and due Tues 11:59pm

• 3 checkpoints + 1 final project

• Most labs will also start with a 5-10 minute quiz on the lecture material in the last
week

• Note: the last week of this course will be on Zoom (4/29+) since I have conference
travel (but we will finishing covering all course material before then)

What about “advanced programming?”
• Assignments will be deliberately vague and will be using appropriate data

structures to solve interesting problems.

• “Write a program to implement this game”, rather than “Please fill out
these methods in this pre-built class…”

• Realistically, no one will hire you and give you the steps to solve a
problem.

• In this class, you should develop the intuition to understand how to
approach problems - and we’re here to help!

Our wonderful TAs!

Kellie Au (she/her)
Junior

Adrian Clement (he/him)
Junior

Asya Lyubavina (she/her)
Junior

Francisco Morales Puente (he/him)
Junior

Dylan O’Connor (he/him)
Junior

Grading
• 30% checkpoints (10% each)

• 30% weekly homework assignments

• 30% final project

• 5% quizzes

• 5% labs

• You can submit checkpoint corrections within a week of grades being
released for up to 50% back (answer key will be released after regrades are
due)

• You can retake quizzes within a week in my OH. Your lowest score is dropped

Course policies
• Late days: like in CS51P, all assignments have an automatic extension until 6:59pm

on Wednesday (right before lab) if you don’t finish them by Tuesday midnight

• If you need more time, please email/Slack me before the extension period is
active

• Students with accommodations should reach out to the SDRC to schedule
alternate checkpoint proctoring times ASAP

• All policies are flexible - just talk to me! We’re here to help you succeed!

• As a final note: this class feels more like CS51P compared to CS54, but it is way
harder and way more work. We’re really ramping up the programming. If you find
yourself overwhelmed, please go to OH/mentor hours!

You have agency!
• To discuss in lab tomorrow:

• How should we incorporate more Leetcode style problems in this
course? (The assignments/labs are largely the same as last semester.)
Should they be in the quizzes? Should we have an extra credit oral
interview opportunity?

• What should this class’s AI policy be? (Ban all usage? OK to use in
instructional formats?) If you violate this policy, what should the
consequences be?

• Other course and participation norms

Course intros

Prof. Li
• Just teaching CS62

OH: Tues 11a-12p, Weds 4-5pm, Thurs 1-2p

• Research: human-computer interaction,
specifically in art creation tools. I run the
Doodle Lab.

• Things that make me happy:

• drawing/painting/cosplaying/sewing

• going to concerts, interior design,
reading, Pokémon

• birding, biking, the sun

they/them • jingyi.li@pomona.edu • Edmunds 111 • jingyi.me

mailto:jingyi.li@pomona.edu
http://jingyi.me

Your turn!
• Name

• Pronouns (if you’d like)

• Did you take 51P with me or did you pass out?

• 1 thing that you’re looking forward to this semester

• 1 thing you’re worried about this semester

Getting started in Java

Java basics
• One of the most popular general-purpose programming languages.

• Java follows the object-oriented programming paradigm which means that our code is organized
as cooperative collections of objects, each of which represents an instance of some class.

• Java code is written in .java files. Each Java file has one Java class which matches the name of the
file.

• e.g., Lecture1.java will have a Lecture1 class where we’ll write all of our code.

• In order to run a Java program, we will need a special main method.

• We will use VS Code as an IDE (Integrated Development Environment).

• In contrast to Python, we will use curly braces ({}) instead of tabs to create logical blocks of code.

• Single-line comments follow // and multi-line are enclosed within /**/.

Example Java file Lecture1.java

public class Lecture1 {
 public static void main(String[] args) {
 //This is a comment

 /*
 * This is a multi-line comment.
 * Hi!
 */
 }
}

These need to match

A hypothetical scenario
• We want to write a program for the Office of Registrar to organize information about

Pomona students.

• Let’s think of what information we would need about a Pomona student. E.g.,:

• Name

• Email

• Pomona ID

• The year they entered Pomona

• Academic standing

• Have they graduated

• Etc.

Recall from 51P…

Variables

Variable review

• Variables have types and values

• References to data stored in memory

• E.g., in Python: age = 18

• Used to reference and manipulate stored information

• E.g., in Python: age = age + 2

• What variable types do you know?

• Integers, floats, strings, booleans, lists…

Declaring and initializing variables
• Unlike Python, Java is statically-typed: all variable types must first be declared before

use:

• dataType variableName = value;

• For example:

• int numberOfCS62Students = 17;

• int means it can hold integers, that is positive and negative whole numbers.

• The name of the variable is numberOfCS62Students.

• = assigns the value on the right to the variable on the left.

• The variable is initialized to 17.

• You always need to finish a statement in Java using a semi-colon ;.

Assigning new values
• Once a variable is declared, I can reference it elsewhere in the program

and assign to it a new value.

• variableName = newValue;

• For example:

• I could change the number of students to 18, if a new student were to
join:

• numberOfCS62Students = 18;

• Note that once a variable has been declared, we do not declare again its
type. But don’t forget the semi-colon.

Assigning new values with static typing
• Recall since Python wasn’t an explicitly

typed language, you could do stuff like
this and it would work:

• x = 4
x = “hello”

• def area(x, y):
 return x * y

• >>> print(area(4, 5))
 20

• >>> print(area(“happy”, 3)
 “happyhappyhappy”

your mental model expects
the type of x and y to be int,

but Python will not reject
other types (like string, since
string multiplication works)

• Question: What happens when
you type this in Java?

• int x = 4;
x = “hello”;

• Answer: a compiler error
incompatible types:
String cannot be
converted to int

Aside: Compiler versus runtime errors
• One benefit of having a statically typed language like Java is now most errors

are compiler errors: Your code will not even compile (i.e., run) without fixing
them.

• This is because Java has an under the hood “type checker” that verifies
your code has correct typing

• When your code runs, but it errors during the execution, that is called a
runtime error (e.g., trying to access an out of bound index in an array)

Naming conventions: camelCase
• Naming variables is very hard. They should be accurately descriptive

and understandable to another reader (and to you, days later).

• It should start with a lowercase letter such as id, name.

• It should not start with the special characters like &, $, _.

• They should be one word. If the name contains multiple words, start it
with the lowercase letter followed by an uppercase letter such as
firstName, lastName.

• This is known as camelCase.

https://www.javatpoint.com/java-naming-conventions

in contrast, Python’s variable naming
conventions is called snake_case: use

underscores.
eg: first_name instead of firstName

https://www.javatpoint.com/java-naming-conventions

Worksheet time!

• Do problems 1a & 1b on your worksheet.

• Declare a variable that stores the number of CS classes you have
taken before CS62 at Pomona and initialize it to the appropriate
number.

• Now assume you access this variable at the end of this semester.
Assign to it the new value that corresponds to the total number of CS
classes you will have taken, including CS62 (and potentially CS101).

Worksheet answers

• You should end up with something like:

• int numberOfCSClasses = 2;

• numberOfCSClasses = 3;

Primitive data types
• Recall: In Python, there are primitive data

types (int, float, bool) and types that are
objects (lists, dictionaries, user defined
classes)

• In addition to int, Java supports in total eight
primitive data types. A primitive type is
predefined by Java and is named by a
reserved keyword (that means they have a
special meaning. e.g., I can’t have a variable
named int).

• The 8 primitive data types in Java:

• byte, short, int, long, float,
double, boolean, char

The most important primitive data types to know

• int - for integers.

• e.g., int numberOfCS62Students = 40;

• double - for decimal-point numbers.

• e.g., double temperatureCelsius = 27.5;

• boolean - for the set of values {true, false}.

• boolean lovingCS62 = true;

• Note that in contrast to Python, true and false are not capitalized.

• char - for single alphanumeric characters and symbols.

• char firstLetter = 'a';

Note: float is also for
decimals, but we’ll prefer using
double in this class. Floating

point math has rounding errors
- you’ll learn why in CS105

Reserved words
• You can’t have these as variable names:

Strings

• Character strings are not primitive data types but are supported
through the java.lang.String class. Note that String is
capitalized.

• We enclose strings in double quotes. For example:

• String name = "Jingyi";

• Note that single quotes are reserved for the char data type.

• char firstLetter = ‘J';

Print statements

Print statements

• The method System.out.println() is used to print an argument
that is passed to. For example:

• System.out.println("Hello World");

• System.out.println(name);
//will print Jingyi

• System.out.println(numberOfCS62Students);
//will print 18

String concatenation

• Like in Python, Strings are concatenated with the + operator, as in
"Hello," + " world" + "!" which results in "Hello, world!”

• Note the spaces in the strings: " world”

• The + operator is widely used in print statements, e.g.,

• System.out.println("My name is " + name + " and I
will be teaching " + numberOfCS62Students + "
students this semester");

• Note that in contrast to Python, you do not need to convert non-
string arguments to string, this is done automatically.

Worksheet time!

• Do problem 1c on your worksheet.

• Declare and initialize a variable whose type is a primitive and pass it
into a print statement, using string concatenation at least once.

Worksheet answers

• There are many different ways to do this, e.g.,:

• int years = 4;

• years += 4;

• System.out.println("Trump will be in office for " +
years + " years. :(");

Returning to our hypothetical scenario
• We want to write a program for the Office of Registrar to organize information about

Pomona students.

• Let’s think of what information we would need about a Pomona student. E.g.,:

• Name

• Email

• Pomona ID

• The year they entered Pomona

• Academic standing

• Have they graduated

• Etc.

Let’s save this information
as variables!

What are the types of each variable?

• Name -> String

• Email -> String

• Pomona ID -> int or String

• The year they entered Pomona -> int

• Academic standing -> String

• How many credits they have taken so far -> int

• Have they graduated -> boolean

But this was for ONE student

• Would we need to make a variable for every single student at Pomona?

• And how can we logically organize them together so that it is clear
which variables correspond to which student?

• What if we need to change information about a student?

• What if we want to distinguish between unique information (e.g.,
name) and shared information across all students (e.g., current
semester)?

• Our code just doesn’t scale up.

Classes & Objects in Java

Object-oriented programming to the rescue

• Objects: logical bundles of software of related state (data) and behavior
(procedures working on that data).

• State: the individual characteristics stored in variables (or fields).

• e.g., name, ID, year entered Pomona, etc.

• Behavior: methods (functions) operate on internal state of objects and
serve as the primary mechanism for object-to-object communication.

• Determine academic standing based on student’s credits and GPA, award
them Latin Honors based on GPA, etc.

Object-oriented programming to the rescue
• Going back to our Python example…

state variables:
self.capacity
self.fruits

behavior methods:
get_num_fruit()
get_max_fruit()

…and we wrap it all up in a custom class

Class
• A blueprint or prototype from which objects are created.

• An object is an instance of a class and the process of creating it is called
instantiation.

• In our example, a class would be a general blueprint for what defines a
Pomona student in general terms. An object would be an actual
instance of a student whose information we specified based on that
general blueprint.

Declaring a class
public class ClassName {

 // variables (state)

 // methods (behavior)

}

• The class body is surrounded by curly braces.

• Class name is a noun and capitalized by convention.

Writing our first class

• To solve our problem, let’s make a PomonaStudent.java file and within
it write a PomonaStudent class:

public class PomonaStudent {

}

Writing our first class
• Now, we need to define the state through creating variables that store

our data. We just list these below the class header
(unlike in Python, where they have to go in __init__()).

Worksheet time!

• Do problem 2a on your worksheet.

• Assume you are volunteering at Claremont Priceless Pets and are
writing a big application so they can digitally manage their pet
adoptions (right now, it’s all printed paper).

• You have determined you want to make one class for each type of pet.

• Define a class Cat and declare variables that correspond to a cat’s
name, sex, age, days spent in rescue, and whether it has been
adopted.

Worksheet answers

public class Cat {

 String name;

 String sex;

 int age;

 int daysInRescue;

 boolean adopted;

}

sex could also be coded as an int (0 =
male, 1 = female, 2= intersex) or other
categorical variables, but strings give

us the most flexibility and human-
readableness

Instantiating objects

• To instantiate a new object use the new keyword. E.g.,

•PomonaStudent student1 = new PomonaStudent();

• Once you have instantiated an object, you can change its state through
the dot operator. E.g.,

•student1.name = "Ravi Kumar";
•student1.email = "rkjc2023@mypomona.edu";

This is syntax heavy, but important!
Compare to Python’s syntax:
student1 = PomonaStudent()

student1.name = "Ravi Kumar"

Instantiating objects: do it in main()

• We typically (but not always) instantiate objects in the main method of a
class. E.g.,

public static void main(String[] args){

 PomonaStudent student1 = new PomonaStudent();

 student1.name = "Ravi Kumar";

 student1.email = "rkjc2023@mypomona.edu";

 student1.id = 1234;

}

Making a constructor
• We can also initialize fields during instantiation.

• To do, we will need a special type of method, a constructor.

• Constructors are methods that have the same name with the class and can take 0 or more
parameters that typically correspond to all or a subset of the variables. E.g.,

public PomonaStudent(String studentName, String studentEmail, int studentId){

 this.name = studentName;

 this.email = studentEmail;

 this.id = studentId;

}

• We can now instead write, to instantiate:

PomonaStudent student2 = new PomonaStudent("Ravi Kumar”,
"rkjc2023@mypomona.edu", 1234);

arguments

parameters

Compare to Python’s constructor syntax:
def __init__(self, name, email, id):

Compare to Python’s instantiation:
student2 = PomonaStudent(“Ravi Kumar”,

“rkjc2023@mypomona.edu”, 1234)

note the “this”
keyword -
same to

Python’s “self”

The default, no argument constructor
• If we don’t specify a constructor, Java makes implicitly one for us, the zero-argument constructor.

• All variables are initialized to their default value, i.e.,

•int->0

•double ->0.0

•boolean -> false

• and any object reference (e.g., String) is set to null.

• The no-argument constructor is what we invoked before:

•PomonaStudent student1 = new PomonaStudent();

• Note: Once we specify a constructor, we HAVE to explicitly create a no-argument constructor; our
code above would stop working otherwise.

you can think
about “null” as

Python’s “None”

Multiple constructors: overloading

• Unlike in Python, in Java, you can have more than one constructors that specify different
ways that an object of our class can be instantiated.

• E.g., a different constructor could only initialize a student’s name upon instantiation.
i.e.:

public PomonaStudent(String studentName) {

name = studentName;

}

• This is known as overloading. Java knows which constructor you mean to use by matching
the number, type, and order of arguments you are passing to the equivalent parameters.

Our code, with constructors

Accessing instance variables using .
• Once we have instantiated an object, we can access its instance (or member) variables using the dot operator. E.g.,

public static void main(String[] args){

 PomonaStudent student2 = new PomonaStudent("Ravi Kumar”, "rkjc2023@mypomona.edu",
 1234);

 System.out.println(student2.name); //prints Ravi Kumar

 student2.name = "Jingyi Li";

 System.out.println(student2.name); //prints Jingyi Li - we changed the name

 }

• We cannot access instance variables without specifying the object. For example:

public static void main(String[] args){

 System.out.println(name); //won’t compile - WHOSE name?

 System.out.println(PomonaStudent.name); //incorrect - remember, we need to use

 //object names, not class names!

 }

this keyword
• The keyword this refers to the current object. We can use it to differentiate

between instance variables and parameters when they have the same name.

public PomonaStudent(String name, String email, int id) {
 this.name = name;
 this.email = email;
 this.id = id;
} This example prints Value of x = 5

Without the this.x = x in the
constructor (if the line was just x = x)
this example would print
Value of x = 0 (x’s default value)

Instance
variables

Parameters

Our code, with object instantiation in main()

Worksheet time!

• Do problem 2b on your worksheet.

• Fill in the Cat constructor to take 3 arguments: name, age, and sex.

• In the main method, instantiate two objects of type Cat. Initialize their
name, age, and sex to whatever you choose.

• Once you instantiate the two Cat objects, initialize their days in rescue
to whatever number you want.

• Finally, adopt a cat!

Worksheet answers

Summary
• The object-oriented programming

paradigm captures state (through
variables) and behaviors (through
methods). Each class defines the kinds
of state and behaviors each instance of
the class should have. (Class =
PomonaStudent, instance = student1,
student2)

• We need to define constructors in our
class to define how we make instances,
or instantiate new objects

• We then actually instantiate objects
usually in the main() function

Lecture 1 wrap-up
• Your TODO: Fill in course survey by EOD

• See you in lab tomorrow (7pm Edmunds 105)!

• In general, you should read the labs before coming, but no need to for this first one.

• On Thursday, we’ll announce mentor hour times - if any of this review was fast/
confusing, please review these slides, mark questions, and go ask for help.

Resources
• Variables: https://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html

• Oracle’s guide: What Is an Object? What Is a Class?
https://docs.oracle.com/javase/tutorial/java/concepts/index.html

• Classes and Objects: https://docs.oracle.com/javase/tutorial/java/javaOO/
index.html

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/javaOO/index.html
https://docs.oracle.com/javase/tutorial/java/javaOO/index.html

