
Tree-Structured Data

Joseph C Osborn

April 28, 2025

Outline

Trees vs lists

Binary Trees

Binary Search Trees

Lists vs Strings

We've seen that in Haskell, a string is a list of characters.

Strings, since they specify their inner type (and the inner type is

from the �nite set of characters), are "�at" data structures.

Lists, on the other hand, can contain lists of another type inside of

them, and they have a "tree structure":

[[[1, 2, 3], [4, 5]], [[6, 7], [], []]]

▶ Outer list
▶ First inner list

▶ [1,2,3]

▶ [4,5]

▶ Second inner list
▶ [6,7]

▶ []

▶ []

Trees vs Lists

▶ We can certainly make trees out of lists, if we know the
number of levels in advance.
▶ e.g. [[[Int]]] in the last example

▶ But what if we want a tree-like structure that can go

arbitrarily deep?

Compare:

data List a = Nil | Cons a

data Tree a = Branch a [Tree a]

De�ne an example of a nested list and a corresponding tree, and

compare their types.

Binary Trees in Haskell

Branch [Tree a] is a very general constructor, for trees where

branches can have arbitrary numbers of child branches and leafs.

Sometimes, we want some assurances that we're working with a

tree of a more predictable shape.

In these cases we use a type like this:

data BTree a = Empty | Branch a (BTree a) (BTree a)

De�ne an example BTree using this constructor.

Tree to List

data BTree a = Empty | Branch a (BTree a) (BTree a)

Let's write a function to convert a BTree to a list:

traverse Empty = []

traverse Branch a (BTree l) (BTree r) =

traverse l ++ [a] ++ traverse r

Find an element in a tree

data BTree a = Empty | Branch a (BTree a) (BTree a)

Let's implement a search function that goes through the whole tree

to �nd an element satisfying a predicate.

Don't use traverse!

find :: (elt -> Bool) -> BTree elt -> Maybe elt

find _ Empty = Nothing

find f (Branch a left right) = ...

Find an element in a tree

data BTree a = Empty | Branch a (BTree a) (BTree a)

find :: (elt -> Bool) -> BTree elt -> Maybe elt

find _ Empty = Nothing

find f (Branch a left right)

| f a = Just a

| otherwise = case find f left of

Just x -> Just x

Nothing -> find f right

Insert an element in a tree

data BTree a = Empty | Branch a (BTree a) (BTree a)

Let's �nish this function, which adds elt at the leftmost spot.

insert :: elt -> BTree elt -> BTree elt

insert x Empty = ...

insert x (Branch _ left right) = ...

Insert an element in a tree

data BTree a = Empty | Branch a (BTree a) (BTree a)

insert :: elt -> BTree elt -> BTree elt

insert x Empty = Branch x Empty Empty

insert x (Branch _ left _right) = insert x left

Tree Surgery

data BTree a = Empty | Branch a (BTree a) (BTree a)

How about this one, which removes and returns the leftmost value

from the tree?

remove_leftmost :: BTree elt -> (BTree elt, Maybe elt)

remove_leftmost Empty = (Empty, Nothing)

remove_leftmost (Branch a left right) =

case remove_leftmost left of

(Empty, Nothing) -> -- This is the leftmost item!

(tree, Just x) -> -- Left child had some item

Tree Surgery

data BTree a = Empty | Branch a (BTree a) (BTree a)

How about this one, which removes and returns the leftmost value

from the tree?

remove_leftmost :: BTree elt -> (BTree elt, Maybe elt)

remove_leftmost Empty = (Empty, Nothing)

remove_leftmost (Branch a left right) =

case remove_leftmost left of

(Empty, Nothing) -> (right, Just a) -- This is the leftmost item!

(tree, Just x) -> (Branch a tree right, Just x) -- Left child had some item

Remove an element from a tree

data BTree a = Empty | Branch a (BTree a) (BTree a)

How about this one, which removes all the elements equivalent to

x?

remove :: (Eq elt) => elt -> BTree elt -> BTree elt

remove _ Empty = Empty

remove x (Branch a left right) =

| a == x = -- ? what to do here?

| otherwise = Branch a (remove x left) (remove x right)

Remove an element from a tree

data BTree a = Empty | Branch a (BTree a) (BTree a)

How about this one, which removes all the elements equivalent to

x?

Hint: We want to recursively remove on both sides, but then what

do we put in place of a removed element?

May as well use that remove_leftmost function!

remove :: (Eq elt) => elt -> BTree elt -> BTree elt

remove _ Empty = Empty

remove x (Branch a left right) =

| a == x = case ((remove x left), (remove x right)) of

(Empty, r) -> r

(l, r) -> -- now what?

| otherwise = Branch a (remove x left) (remove x right)

Remove an element from a tree

data BTree a = Empty | Branch a (BTree a) (BTree a)

How about this one, which removes all the elements equivalent to

x?

Hint: We want to recursively remove on both sides, but then what

do we put in place of a removed element?

May as well use that remove_leftmost function!

remove :: (Eq elt) => elt -> BTree elt -> BTree elt

remove _ Empty = Empty

remove x (Branch a left right) =

| a == x = case ((remove x left), (remove x right)) of

(Empty, r) -> r

(l, r) -> case remove_leftmost l of

(lrem, Just swap) -> Branch swap lrem r

(lrem, Nothing) -> error "No leftmost element of empty tree"

| otherwise = Branch a (remove x left) (remove x right)

Functor and fmap

Finally, we'll revisit fmap from last time. Just like we can map

through Maybe, we can map through a BTree:

data BTree a = Empty | Branch a (BTree a) (BTree a)

fmap :: (a -> b) -> BTree a -> BTree b

Give it a try! This one isn't as hard as the last one.

Functor and fmap

Finally, we'll revisit fmap from last time. Just like we can map

through Maybe, we can map through a BTree:

data BTree a = Empty | Branch a (BTree a) (BTree a)

fmap :: (a -> b) -> BTree a -> BTree b

fmap _f Empty = Empty

fmap f (Branch a l r) = Branch (f a) (fmap f l) (fmap f r)

Binary Search Trees

Let's re�ne our binary trees a little more. We'll say a subset of

BTrees are "binary search trees".

That means they're used for searching, they can only hold orderable

things, and they meet this property:

For all trees: an empty tree has the BST property; and a branch

has the property if all the elements on the left branch are smaller

than its value, and all the elements on the right branch are bigger

than its value, and both branches are also BSTs.

For this lecture we'll say that BSTs contain no duplicates.

BSTs are really useful for quickly �nding if an object is in a

collection of objects, and for maintaining a record of the minimum

and maximum objects in the set.

Find an element in a BST

bst_member :: (Ord x) => x -> BTree x -> Bool

bst_member _ Empty = False

bst_member x (Branch a l r)

| x == a = True

| x < a = bst_member x l

| otherwise = bst_member x r

Min, max

Min is a "�nd leftmost" function, max is a "�nd rightmost"

function, and "remove min" is just our remove_leftmost function

from before!

Give min and max a try!

Insert an element in a BST

bst_insert :: (Ord x) => x -> BTree x -> BTree x

bst_insert a Empty = Branch a Empty Empty

bst_insert x (Branch a l r)

| x == a = -- ?

| x < a = -- ??

| otherwise = -- ???

Insert an element in a BST

bst_insert :: (Ord x) => x -> BTree x -> BTree x

bst_insert a Empty = Branch a Empty Empty

bst_insert x (Branch a l r)

| x == a = Branch a l r

| x < a = Branch a (bst_insert x l) r

| otherwise = Branch a l (bst_insert x r)

Induction on a BST

BTrees are inductively de�ned, so we can do induction on them too:

For any BTree b, P(b). Let b be given; by induction on b.

▶ (b = Empty). P(Empty)

▶ (b = Branch a l r). IHl: P(l). IHr: P(r).
▶ WTP: P(Branch a l r).

Proof: insertpreservesbst

for any element x and BTree b, if b is a BST then insert x b is a

BST.

(Recall: "Is a BST" means "a is bigger than any element in left

and smaller than any element in right")

▶ By induction on b.

▶ Empty: insert x Empty is just Branch x Empty Empty which is

trivially a BST.

▶ Branch a l r: IH1: "If l is a BST then insert x l is a BST".
IH2: "If r is a BST then insert x r is a BST".
▶ Assume b is a BST.
▶ By cases on x vis-a-vis a:
▶ x=a. b is a BST, and insert x b = b in this case.
▶ x<a. r is a BST, l is a BST, and by IH1 if l is a BST then

insert x l is a BST. We know x < a so b is a BST.
▶ x>a. Likewise, but with r/IH2 instead of l/IH1.

Remove an element from a BST

bst_remove :: (Ord x) => x -> BTree x -> BTree x

bst_remove _ Empty = Empty

bst_remove x (Branch a l r)

| x == a = -- use remove_leftmost and bst_insert!

| x < a = Branch a (bst_remove x l) r

| otherwise = Branch a l (bst_remove x r)

Proof: removepreservesbst

for any element x and BTree b, if b is a BST then remove x b is a

BST.

This is a very similar proof to the last one, but depends on the

previous proof.

	Trees vs lists
	Binary Trees
	Binary Search Trees

