
Data Types in Haskell

Joseph C Osborn

April 28, 2025

Outline

Type De�nitions in Haskell

Partial Functions

Types

So far we've seen a few types in Haskell:

▶ Int, Integer, Bool

▶ Char

▶ Lists: [Char], [a] for some a

▶ Tuples, e.g. ([Char], Int) or (a, b, c)

▶ Function types: a -> b, Int -> Int -> Int

As well as some type classes like Ord or Eq or Num.

The data statement

Haskell lets you de�ne your own types too:

data Suit = Hearts | Spades | Clubs | Diamonds

data Rank = A | K | Q | J | Ten | Nine | ...

data Card = Card Suit Rank

More Examples

data Nat = O | S Nat

data MyList a = MyNil | MyCons a (MyList a)

data SortedList a = Sorted [a]

sort :: (Ord a) => [a] -> Sorted [a]

Syntax

▶ data TypeName (TypeParameters...) =
▶ Constructor (Parameters...)

▶ | Constructor (Parameters...)

Exercise

1. De�ne a datatype for days of the week.

2. De�ne a datatype for class meeting times (e.g. CSCI 054

meets on Mondays and Wednesdays from hour 13, minute 15

until hour 14, minute 30).

3. De�ne a datatype for a class, including its name and meeting

times.

Matching

Remember from earlier in the course: construction is dual to

matching!

is_face_card (Card _ K) = True

is_face_card (Card _ Q) = True

is_face_card (Card _ J) = True

is_face_card _ = False

Matching

insert x (Sorted []) = Sorted [x]

insert x (Sorted (y:l))

| x <= y = Sorted (x:y:l)

| otherwise = let Sorted s = insert x (Sorted l) in Sorted (y:s)

This tells the caller�if you assume insert is correct, and you have

evidence l is sorted, the output will also give you evidence l is

sorted.

Exercise

Write a function using your class datatype from the earlier exercise

to calculate how many minutes of time you meet for a class during

the week.

You can write a helper function if you want.

contact_minutes :: Class -> Int

Maybe

Remember this function?

list_min [] = error "oh no"

list_min [x] = x

list_min (x:xs) = min x (list_min xs)

It's very unsatisfying that it crashes on an empty list.

Maybe

I prefer this one:

list_min :: (Ord a) => [a] -> Maybe a

list_min [] = Nothing

list_min (x:xs) =

case list_min xs of

Nothing -> Just x

Just rest -> min x rest

Haskell's Maybe a type has two variants: Nothing and Just a.

(Some programming language libraries call this type Option, with

variants None and Some.)

Maybe

Our new list_min can never throw an error, no matter what list

we give it.

But the tradeo� is that now we need to write a case around the

call to list_min:

case list_min l of

Nothing -> "Empty list"

Just x -> "Smallest element found"

Still, it's much better to have to write error handling code than to

maybe crash sometimes.

Maybe

If we were very sure the list weren't empty, we could de�ne:

unwrap :: Maybe a -> a

unwrap (Just x) = x

unwrap Nothing = error "empty Maybe!"

(unwrap (list_min [1,2,3])) * 2

Maybe

But we can also do work on the Maybe, to avoid excessive

unwrapping:

fmap (\x -> x * 2) (list_min l)

This will return double the minimum element of l if it exists (as

Just 14 or whatever), or else Nothing if there was no minimum

element.

It's a lot like map for lists, but for arbitrary mappable types.

�ndby

Implement find_by :: (a -> Bool) -> [a] -> Maybe a,

which returns the �rst a in the list satisfying the test. It's ok to use

either filter or recursion.

Either

In case a computation might fail in more than one way, Haskell also

provides Either:

data Either a b = Left a | Right b

For example, reading a �le from disk might give Left String or

Right FileNotFound or Right FileAccessForbidden error or

Right FileTooBig, from a type like:

data FileReadError = FileNotFound |

FileAccessForbidden | FileTooBig | ...

Some languages call this type Result with variants Ok, Err.

�nduniqueby

Given the error type data FindError a = EmptyList |

NotUnique([a]), de�ne find_unique_by :: (a -> Bool) ->

[a] -> Either a (FindError a), which returns one of:

1. The �rst found element in the list, if it's the only one passing

the test;

2. Right EmptyList, if the list is empty; or

3. Right NotUnique(dupes) if there is more than one element

that passes the test.

Either

We can also de�ne tools like fmap for Either, that do things like

"map the Right variant to a di�erent type", or "map the Left a

variant to an Either c d, producing either Left c or Right d

depending on the result", or "If this is a Left x, produce Just x,

otherwise produce Nothing".

These combinators can be really useful for avoiding code with lots

of cases and ifs! You can code on the error-free path for the most

part using combinators, and handle errors at the end of the chain.

	Type Definitions in Haskell
	Partial Functions

