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Outline

Induction, Revisited

Structural Induction on Lists



Inductive "motors"

▶ We've seen two inductive principles so far
▶ "Weak induction" over natural numbers

▶ P(0) ∧ (∀x ,P(x) → P(x + 1)) → (∀x ,P(x))
▶ "Strong induction" over natural numbers

▶ P(0) ∧ (∀x , (∀y , y ≤ x → P(y)) → P(x + 1)) → (∀x ,P(x))
▶ But we can imagine others



More "motors"

▶ "Induction over even numbers"
▶ "If P holds for an even number n, and we can show therefore P

holds for n+2, then it holds for all even numbers"

▶ "Induction over powers of two"
▶ "If P holds for a power of two x, and we can show therefore P

holds for 2x, then it holds for all powers of two"

▶ "Induction over strings"
▶ "If P holds for a string S, and we can show therefore P holds

for S but with some arbitrary character appended, P holds for
all strings"



Inductively De�ned Structures

▶ Our original induction principle is nothing special

▶ Each of these inductive motors is de�ned over an inductively
de�ned structure
▶ "The next even number" is two bigger than the last
▶ "The next power of two" is two times the last
▶ "The next string" is one character longer
▶ "The next natural number" is one bigger than the last



The Natural Numbers

▶ So far we've described natural numbers as an open interval
from 0. . .
▶ We could instead say "0 is a natural number, and forall natural

numbers n, 1+n is a natural number".

▶ This framing is an inductive de�nition

▶ Inductive de�nitions automatically provide inductive principles
(motors)



Other inductive structures

▶ Lists

▶ Trees

▶ Graphs

▶ Haskell programs

▶ . . . and more!



Induction and Recursion

▶ Induction is dual to recursion
▶ Recursion breaks down a big problem into small pieces
▶ Induction builds up a big object (a value, a proof) out of small

pieces

▶ Induction is the natural tool for proofs about computer
programs
▶ Whether implemented with recursion or loops



List Processing

length [] = 0

length (_x:l) = 1 + length l

append [] l2 = l2

append (x:l1) l2 = x:(append l1 l2)

reverse [] = []

reverse (x:l) = append (reverse l) [x]



Some Properties

▶ forall l1 l2, length l1 + length l2 = length (append l1

l2)

▶ forall l, length l = length (reverse l)

▶ forall l x, reverse (append l [x]) = x:(reverse l)

▶ forall l, l = reverse (reverse l)



Length-Append-Dist

▶ forall l1 l2, length l1 + length l2 = length (append l1

l2)

▶ By induction on l1.

▶ (l1 = []). WTP length [] + length l2 = length
(append [] l2).

▶ In other words, length l2 = length l2, which is trivially

true.

▶ (l1 = (x:l1')). IH: length l1' + length l2 = length
(append l1' l2).

▶ WTP length (x:l1') + length l2 = length (append

(x:l1') l2).
▶ By the de�nition of append and of length, this is:
▶ 1 + length l' + length l2 = length (x:(append l1'

l2)) = 1 + length (append l1' l2).
▶ We know by the IH that length (append l1' l2) and

length l1' + l2 are the same value, so the property is

proved.
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Reverse Preserves Length

▶ forall l, length l = length (reverse l)

▶ By induction on l

▶ (l = []). WTP length [] = length (reverse []);
reverse [] = [] so this is evident.

▶ (l = (x:l')). IH: length l' = length (reverse l').

▶ WTP length (x:l') = length (reverse (x:l')).
▶ By def'n of reverse, 1 + length l' = length (append

(reverse l') [x]).
▶ By the last property, length (append (reverse l') [x])

= length (reverse l') + length [x] = length

(reverse l') + 1.
▶ By the IH, length (reverse l') = length l', so we have

to show 1 + length l' = length l' + 1, which is

immediate by the commutativity of addition.
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Reverse-Append-Single

▶ forall l x, reverse (append l [x]) = x:(reverse l)

▶ By induction on l.

▶ (l = []). reverse (append [] [x]) = reverse [x] = [x]

= (x:reverse []).
▶ (l = (y:l')). IH: reverse (append l' [x]) = x:(reverse

l').

▶ WTP reverse (append (y:l') [x]) = x:(reverse

(y:l'))
▶ By def'n of append and reverse: reverse (append (y:l')

[x]) = append (reverse (append l' [x])) [y].
▶ By the IH, reverse (append l' [x]) = x:(reverse l'),

so we have append (x:(reverse l')) [y] = x:(append

(reverse l') [y]).
▶ On the right side, we have x:(reverse (y:l')) =

x:(append (reverse l') [y]), which is just our left hand

side.
▶ So the left and right sides are equal and the theorem is proved.
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Reverse-Self-Inverse

▶ forall l, l = reverse (reverse l)

▶ By induction on l.

▶ (l = []). reverse (reverse []) = reverse [] = [].
▶ (l = (x:l')). IH: l' = reverse (reverse l').

▶ WTP (x:l') = reverse (reverse (x:l')).
▶ By def'n of reverse: reverse (reverse (x:l')) = reverse

(append (reverse l') [x]).
▶ By the previous theorem, reverse (append (reverse l')

[x]) = x:(reverse (reverse l')).
▶ But reverse (reverse l') is just l' by the IH, so we've

shown what we are trying to prove.
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Higher-Order Functions

map _f [] = []

map f (x:l) = (f x):(map f l)

filter _f [] = []

filter f (x:l)

| f x = x:(filter f l)

| otherwise = filter f l

double_all [] = []

double_all (x:l) = (x+x) : double_all l

▶ Formally state and prove these properties:
▶ "The output of map f l has the same length as the input list"
▶ "The output of map f (append l1 l2) is the same as

append (map f l1) (map f l2)"
▶ "map (* 2) is equivalent to double_all"

▶ What does it mean for two functions to be equivalent?
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