csci54 – discrete math & functional programming proofs on sets, functions

this week:

- week09-group
- week09-ps

next week:

- Tuesday review session (based on week09-group)
- Thursday checkpoint
 - open one 8.5"x11" double-sided page of notes
 - closed everything else
 - Focused on things covered after the first checkpoint
- no group meeting (or optional, reach out to your TA), no problem set
- week after that:
 - Number theory, final bits of 54

Recall: sets

- A set is an unordered collection of objects
- ▶ Given a set S and an object o, either $o \in S$ or $o \notin S$
- ► The cardinality of a set is written |S| and is the number of elements in the set
- Special sets:
 - the empty set, which contains no elements: {} or
 - the universal set, U
- Set operations: complement, union, intersection, difference, Cartesian product
- Comparing/relating sets: equality, subset, proper subset, superset, proper superset, disjoint

Set operations

- ► S^c: set complement
- SUT: set union
 - \triangleright SUT { x : x \in S or x \in T }
- ► S∩T: set intersection
 - \triangleright S\(\T\) { x : x \(\in\) S and x \(\in\) T }
- S-T: set difference
 - ► ST $\{ x : x \in S \text{ and } x \notin T \}$
- SxT: Cartesian product
 - AxB = $\{(x,y) : x \in A \text{ and } y \in B \}$

Comparing/relating sets

- = : set equality
- S and T contain the same elements
- ► ⊆ : subset
- S contains T
- ► ⊂ : proper subset
- S contains T and S does not equal T
- ⊇ : superset
- T contains S
- ▶ ⊃ : proper superset
- T contains S and T does not equal S
- "T and S are disjoint"
- T and S share no elements

proofs on sets

- Element-wise:
 - Show that no matter which elements of the sets are picked, membership/non-membership is provable
- Algebraic:
 - Use properties of the operations to show relations between sets

proofs on sets

ightharpoonup Claim $\{x \in \mathbb{Z} : 18|x\} \subseteq \{x \in \mathbb{Z} : 6|x\}$

let y be an arbitrary element of the set $\{x \in \mathbb{Z} : |18|x\}$ then direct proof using definition of subset

Proof:

- Let y be an arbitrary element of the set $\{x \in \mathbb{Z} : 18|x\}$
- ▶ This means there exists an integer k such that y = 18k
- Furthermore, since y=18k=6(3k) , we know that 6|y and $y\in\{x\in\mathbb{Z}:6|x\}$
- Since this is true for any element $y \in \{x \in \mathbb{Z} : 18 | x\}$, it is true for every element.
- ▶ Therefore $\{x \in \mathbb{Z} : 18 | x\} \subseteq \{x \in \mathbb{Z} : 6 | x\}$

proofs on sets

ightharpoonup Claim $\{x \in \mathbb{Z} : 18|x\} \subseteq \{x \in \mathbb{Z} : 6|x\}$

- ▶ Is the claim still true if we replace superset with strict superset? Prove your answer correct
- Is the claim still true if we replace superset with equals? Prove your answer correct
- More generally:
 - how do you prove set equality?
 - prove subset in both directions
 - how do you prove strict subset?
 - prove subset and not equal

Recall: functions

Definition 2.46: Function.

Let A and B be sets. A function f from A to B, written $f: A \to B$, assigns to each input value $a \in A$ a unique output value $b \in B$; the unique value b assigned to a is denoted by f(a). We sometimes say that f maps a to f(a).

Given a function

- the domain is the set A
- the co-domain is the set B
- the range (or the image) is the subset of B that are actually mapped to by an element in A.

classifying functions - definitions

- one-to-one: a function is one-to-one if, for every element of the codomain, at most one element of the domain maps to it.
- onto: a function is onto if, for every element of the co-domain, there is an element of the domain that maps to it.
 - alternatively, a function is onto if the co-domain equals the range
- bijection: a function is a bijection if it is both one-to-one and onto

classifying functions

- one-to-one: a function is one-to-one if, for every element of the co-domain, at most one element of the domain maps to it.
 - in other words: if f(x) = f(y), then x=y.

- onto: a function is onto if, for every element of the co-domain, there is an element of the domain that maps to it.
 - in other words, f(y) = x

example

ightharpoonup Claim: the function g(x) = x-1 is a bijection

a function is a bijection if it is both one-to-one and onto

- Proof:
 - g is one-to-one:

one-to-one: if f(x) = f(y), then x=y

- ▶ assume there are two elements x, y in Z such that g(x)=g(y). Then x-1=y-1, so x=y
- therefore g is one-to-one

onto: f(y) = x

- g is onto:
 - let x be any element of Z. Then x+1 is an element that maps to x.
 - since x is any element of Z, every element of Z has an element that maps to it,
 - therefore g is onto
- since g is one-to-one and onto, g is a bijection

a little more on bijections

If a function is a bijection, then it is also <u>invertible</u>. In other words, if f is a bijection, then there is a function f^{-1} such that f(x) = y iff $f^{-1}(y) = x$

- ▶ The identity function f(x)=x is a bijection
 - the identity function is the function that maps every element to itself

