$$
\begin{array}{r}
\text { csci54 - discrete math \& functional programming } \\
\text { proofs on sets, functions }
\end{array}
$$

- this week:
- week09-group
- week09-ps
- next week:
- Tuesday review session (based on week09-group)
- Thursday checkpoint
" open one 8.5"x11" double-sided page of notes
- closed everything else
- Focused on things covered after the first checkpoint
- no group meeting (or optional, reach out to your TA), no problem set
- week after that:
- Number theory, final bits of 54


## Recall: sets

- A set is an unordered collection of objects
- Given a set $S$ and an object o, either $o \in S$ or $o \notin S$
- The cardinality of a set is written $|\mathrm{S}|$ and is the number of elements in the set
- Special sets:
- the empty set, which contains no elements: \{\} or
- the universal set, U
- Set operations: complement, union, intersection, difference, Cartesian product
- Comparing/relating sets: equality, subset, proper subset, superset, proper superset, disjoint


## Set operations

- $\mathrm{S}^{\text {c: }}$ set complement
${ }^{*} S^{c}=\{x \in U: x \notin S\}$
- SUT: set union
- SUT $\{x: x \in S$ or $x \in T\}$
- $\mathrm{S} \cap \mathrm{T}$ : set intersection
- $\mathrm{S} \cap \mathrm{T}\{\mathrm{x}: \mathrm{x} \in \mathrm{S}$ and $\mathrm{x} \in \mathrm{T}\}$
- S-T: set difference
- ST $\{x: x \in S$ and $x \notin T\}$
- SxT: Cartesian product
- $A x B=\{(x, y): x \in A$ and $y \in B\}$

Comparing/relating sets

- = : set equality
- S and T contain the same elements
${ }^{\bullet} \subseteq$ : subset
- S contains T
- c : proper subset
- S contains T and S does not equal T
- $\supseteq$ : superset
- T contains S
- $\supset$ : proper superset
- T contains S and T does not equal S
- "T and S are disjoint"
- T and S share no elements


## proofs on sets

- Element-wise:

E Show that no matter which elements of the sets are picked, membership/non-membership is provable

- Algebraic:

E Use properties of the operations to show relations between sets

## proofs on sets

- Claim $\{x \in \mathbb{Z}: 18 \mid x\} \subseteq\{x \in \mathbb{Z}: 6 \mid x\}$

> let $y$ be an arbitrary element of the set $\{x \in \mathbb{Z}: 18 \mid x\}$ then direct proof using definition of subset

- Proof:
- Let y be an arbitrary element of the set $\{x \in \mathbb{Z}: 18 \mid x\}$
- This means there exists an integer $k$ such that $y=18 k$
- Furthermore, since $y=18 k=6(3 k)$, we know that $6 \mid y$ and $y \in\{x \in \mathbb{Z}: 6 \mid x\}$
- Since this is true for any element $y \in\{x \in \mathbb{Z}: 18 \mid x\}$, it is true for every element.
- Therefore $\{x \in \mathbb{Z}: 18 \mid x\} \subseteq\{x \in \mathbb{Z}: 6 \mid x\}$


## proofs on sets

- Claim $\{x \in \mathbb{Z}: 18 \mid x\} \subseteq\{x \in \mathbb{Z}: 6 \mid x\}$
- Is the claim still true if we replace superset with strict superset? Prove your answer correct
- Is the claim still true if we replace superset with equals? Prove your answer correct
- More generally:
- how do you prove set equality?
- prove subset in both directions
- how do you prove strict subset?
- prove subset and not equal


## Recall: functions

## Definition 2.46: Function.

Let $A$ and $B$ be sets. A function from $A$ to $B$, written $f: A \rightarrow B$, assigns to each input value $a \in A$ a unique output value $b \in B$; the unique value $b$ assigned to $a$ is denoted by $f(a)$. We sometimes say that $f$ maps a to $f(a)$.

## - Given a function

- the domain is the set $A$
- the co-domain is the set $B$
- the range (or the image) is the subset of B that are actually mapped to by
 an element in $A$.


## classifying functions - definitions

- one-to-one: a function is one-to-one if, for every element of the codomain, at most one element of the domain maps to it.
- onto: a function is onto if, for every element of the co-domain, there is an element of the domain that maps to it.
- alternatively, a function is onto if the
 co-domain equals the range
- bijection: a function is a bijection if it is both one-to-one and onto


## classifying functions

- one-to-one: a function is one-to-one if, for every element of the co-domain, at most one element of the domain maps to it.
- in other words: if $f(x)=f(y)$, then $x=y$.

- onto: a function is onto if, for every element of the co-domain, there is an element of the domain that maps to it.
- in other words, $f(y)=x$


## example

- Claim: the function $g(x)=x-1$ is a bijection

> a function is a bijection if it is both one-to-one and onto

- Proof:
- $g$ is one-to-one:
one-to-one: if $f(x)=f(y)$, then $x=y$
- assume there are two elements $x, y$ in $Z$ such that $g(x)=g(y)$. Then $x-1=y-1$, so $x=y$
- therefore g is one-to-one

```
onto: f(y) = x
```

- $g$ is onto:
- let $x$ be any element of $Z$. Then $x+1$ is an element that maps to $x$.
v since $x$ is any element of $Z$, every element of $Z$ has an element that maps to it,
- therefore g is onto
s since $g$ is one-to-one and onto, $g$ is a bijection


## a little more on bijections

- If a function is a bijection, then it is also invertible. In other words, if $f$ is a bijection, then there is a function $f^{-1}$ such that $f(x)=y$ iff $f^{-1}(y)=x$
- The identity function $f(x)=x$ is a bijection
v the identity function is the function that maps every element to itself

