In-Class Worksheet Discrete Math & Functional Programming— CSCI 054— Spring 2024 Instructor: Osborn

binary 	decimal	hexadecimal	
11001			
	1782		
		0x3A	

 $\forall j, k \in \mathbb{Z}, j \text{ and } k \text{ are odd if and only if } jk \text{ is odd.}$

Claim: 1 = 0.

"Proof": Suppose that 1=0. Then

$$1 = 0 \qquad \qquad \text{(by assumption)}$$

$$0 \cdot 1 = 0 \cdot 0 \qquad \qquad \text{(multiplying both sides by 0)}$$

$$0 = 0$$

Since clearly 0 = 0, we conclude that 1 = 0.

What is the truth table for the proposition $\neg p \Rightarrow$ False?