$$
\begin{array}{r}
\text { csci54 - discrete math \& functional programming } \\
\text { proofs continued }
\end{array}
$$

looking ahead

- this week:
- No problem set, but still have group work
- next week: spring break!
- checkpoint 2 :
- in class on Thursday 3/28
- accommodations: schedule with SDRC asap

on proof writing

- proof: a convincing argument written for a particular audience
- guidelines:
- unless it's a direct proof without cases, state what proof technique you're using
- define variables
- have a concluding statement

proving "for all" statements

- claim: if x and y are even integers, then $x+y$ is an even integer
- claim: given any two integers x and y, if x and y are even then $x+y$ is even.
- observation on proving "for all" statements
- "let x be an element of S"
- since true for any element of S, must be true for all elements of S

Above all, remember that your primary goal in writing is communication. Just as when you are programming, it is possible to write two solutions to a problem that both "work," but which differ tremendously in readability. Document! Comment your code; explain why this statement follows from previous statements. Make your proofs-and your code!-a pleasure to read.

direct proof : example (v1)

- claim: If a number is odd, then its binary representation ends with a 1.
proof:
Let k be an arbitrary odd integer.
- Then there exists an integer r such that $k=2 r+1$.
- Now let $d_{n} \ldots d_{2} d_{1} d_{0}$ be the binary representation of r.
- The binary representation of $2 r$ is then $d_{n} \ldots d_{2} d_{1} d_{0} 0$, and
- The binary representation of $k=2 r+1=d_{n} \ldots d_{2} d_{1} d_{0} 1$.
- conclusion: Therefore the binary representation of any odd integer ends with a 1.

direct proof : example (v2)

- claim: If a number is odd, then its binary representation ends with a 1.
- proof:
- Let k be an arbitrary odd integer.
- Then there exists an integer r such that $k=2 r+1$.
- Now let $\mathrm{d}_{\mathrm{n}} \ldots \mathrm{d}_{2} \mathrm{~d}_{1} \mathrm{~d}_{0}$ be the binary representation of r .
- This means $r=$...
- So $2 r=$...

The binary representation of $2 r$ is therefore $a_{n} \ldots d_{2} d_{1} d_{0} 0$, and

- The binary representation of $k=2 r+1=d_{n} \ldots d_{2} d_{1} d_{0} 1$.
- conclusion: Therefore the binary representation of any odd integer ends with a 1.

direct proof : example (v3)

- claim: If a number is odd, then its binary representation ends with a 1.
- proof:
- Let k be an arbitrary odd integer.
- Then there exists an integer r such that $k=2 r+1$.
- Now let $d_{n} \ldots d_{2} d_{1} d_{0}$ be the binary representation of r.
- This means $r=$...
- So $2 r=\ldots$

$$
=\ldots
$$

- The binary representation of $2 r$ is therefore $d_{n} \ldots d_{2} d_{1} d_{0} 0$, and
- The binary representation of $k=2 r+1=d_{n} \ldots d_{2} d_{1} d_{0} 1$.
- conclusion: Therefore the binary representation of any odd - integer ends with a 1.

if and only if: example

- prove the following claim by proving each direction separately. Use a direct proof in one direction and a proof of the contrapositive in the other.
- claim: For all integers j and k, j and k are odd if and only if their product jk is odd.
- proof: Let j and k be arbitrary integers.
${ }^{\bullet}$ () If j and k are odd, then jk is odd
${ }^{\text {- () If } \mathrm{jk}}$ is odd, then j and k are odd
- Therefore for all integers j and k, j and k are odd if and only if.$j k$ is odd.

a way that things can go wrong

- Claim: 1=0

Proof. Suppose that $1=0$. Then:

$$
\begin{array}{rlrl}
& 1 & =0 \\
\text { therefore, multiplying both sides by } 0 & 0 \cdot 1 & =0 \cdot 0 \\
\text { and therefore, } & 0 & =0 .
\end{array}
$$

And, indeed, $0=0$. Thus the assumption that $1=0$ was correct, and the theorem follows.

- More examples, discussion in Chapter 4.5 of the book

proof techniques

- direct proof:
- start with known facts. repeatedly infer additional new facts until can conclude what you want to show.
- may divide work into cases
- proof of the contrapositive:
- if trying to prove an implication, prove the contrapositive instead
- proof by contradiction
- Claim: p is logically equivalent to $\neg p \rightarrow \perp$

proof techniques

- direct proof:
- start with known facts. repeatedly infer additional new facts until can conclude what you want to show.
- may divide work into cases
- proof of the contrapositive:
- if trying to prove an implication, prove the contrapositive instead
- proof by contradiction
- if trying to prove a statement, assume the statement is not true and prove something that is clearly false. From this conclude that the original statement must be true.

proof by contradiction - logic and example

- the proposition p is logically equivalent to $\neg p \rightarrow \perp$
- claim: The statement $\exists \mathrm{y}: \forall \mathrm{x}: \mathrm{y}>\mathrm{x}$ is false.
- proof by contradiction:
- assume the statement is True; we'll show this leads to a contradiction
- let y^{*} be a y for which the statement is True.
- then y^{*} must be larger than all real numbers x.
- however, y^{*} is also a real number, so $y^{*}>y^{*}$.
- this is a contradiction so the assumption that the statement is True must be wrong.
- therefore the original statement is False.

Example from csci101

Theorem: If L is a context-free language, then:

$$
\begin{aligned}
\exists k \geq 1(\forall \text { strings } w \in L, \text { where }|w| \geq k(\exists u, v, x, y, z \quad(w= & u v x y z, \\
& v y \neq \varepsilon, \\
& |v x y| \leq k, \text { and } \\
& \left.\left.\left.\forall q \geq 0\left(u v^{q} x y^{q} z \text { is in } L\right)\right)\right)\right) .
\end{aligned}
$$

- used to prove that a language L is not context free
- proof by contradiction: assume that L is context free. Then there must be a value k that satisfies the above theorem.
- now show that such a k cannot exist

