csci54 - discrete math \& functional programming proofs: example, counterexample, direct, contrapositive

discrete math so far

- sets
- introductions to propositional and predicate logic
- reflections on what it means to prove something
- this week:
- proof techniques
- group meeting Thursday/Friday
- problem set due this Sunday
- can discuss ideas, but must not look at anyone else's written up solution (in latex, on a whiteboard, etc)

Negating nested quantifiers

- Consider the following statement:

$$
\forall i \in\{1,2, \ldots, n\}:[\exists j \in\{1,2, \ldots, n\}:(i \neq j) \wedge(A[i]=A[j])]
$$

- Simplify the negation:

$$
\neg \forall i \in\{1,2, \ldots, n\}:[\exists j \in\{1,2, \ldots, n\}:(i \neq j) \wedge(A[i]=A[j])]
$$

Example from csci101

Theorem: If L is a context-free language, then:
$\exists k \geq 1$ (\forall strings $w \in L$, where $|w| \geq k(\exists u, v, x, y, z \quad(w=u v x y z$,

$$
\begin{aligned}
& v y \neq \varepsilon, \\
& |v x y| \leq k, \text { and } \\
& \left.\left.\left.\forall q \geq 0\left(u v^{q} x y^{q} z \text { is in } L\right)\right)\right)\right) .
\end{aligned}
$$

$\forall x \in S:[P(x) \vee \neg P(x)]$
$\neg[\forall x \in S: P(x)] \Leftrightarrow[\exists x \in S: \neg P(x)]$
$\neg[\exists x \in S: P(x)] \Leftrightarrow[\forall x \in S: \neg P(x)]$
$[\forall x \in S: P(x)] \Rightarrow[\exists x \in S: P(x)]$
$\forall x \in \varnothing: P(x)$
Vacuous quantification
$\neg \exists x \in \varnothing: P(x)$
$[\exists x \in S: P(x) \vee Q(x)] \Leftrightarrow[\exists x \in S: P(x)] \vee[\exists x \in S: Q(x)]$
$[\forall x \in S: P(x) \wedge Q(x)] \Leftrightarrow[\forall x \in S: P(x)] \wedge[\forall x \in S: Q(x)]$
$[\exists x \in S: P(x) \wedge Q(x)] \Rightarrow[\exists x \in S: P(x)] \wedge[\exists x \in S: Q(x)]$
$[\forall x \in S: P(x) \vee Q(x)] \Leftarrow[\forall x \in S: P(x)] \vee[\forall x \in S: Q(x)]$
$[\forall x \in S: P(x) \Rightarrow Q(x)] \wedge[\forall x \in S: P(x)] \Rightarrow[\forall x \in S: Q(x)]$
$[\forall x \in\{y \in S: P(y)\}: Q(x)] \Leftrightarrow[\forall x \in S: P(x) \Rightarrow Q(x)]$
$[\exists x \in\{y \in S: P(y)\}: Q(x)] \Leftrightarrow[\exists x \in S: P(x) \wedge Q(x)]$

On proofs

- A proof of a proposition is a convincing argument that the proposition is true.
- Assumes that you are trying to convince a particular audience - For this class assume you are writing for a classmate

some definitions

- an integer k is even if and only if there exists an integer r such that $k=2 r$
- an integer k is odd if and only if there exists an integer r such that $k=2 r+1$
- $k \mid m$ if and only if there exists an integer r such that $m=k r$. This is equivalent to saying that " m mod $k=0$ " or that " k evenly divides $\mathrm{m} "$.
- an integer $k>1$ is prime if the only positive integers that evenly divide k are 1 and k itself.
- an integer $k>1$ is composite if it is not prime.
- an integer k is a perfect square if and only if there exists an integer r such that $k=r^{2}$

proof techniques (by giving an example)

- proof by construction / proof by example:
- given a claim that there exists x such that $P(x)$ is true, can prove by constructing such an x
there exists a prime number larger than 20
- disproof by counterexample:
- given a claim that some $P(x)$ is true for all x, can disprove by showing there exists an element y where $P(y)$ is not true.

$$
\begin{aligned}
& \text { for all positive integers } n \text {, } \\
& 2 n=n^{2}
\end{aligned}
$$

practice

- Claim: no positive integer is expressible in two different ways as the sum of two perfect squares.
- Reminder: an integer k is a perfect square if and only if there exists an integer r such that $k=r^{2}$

proof techniques

- direct proof:
- start with known facts. repeatedly infer additional new facts until can conclude what you want to show.
- may divide work into cases
- proof of the contrapositive
- if trying to prove an implication, prove the contrapositive instead
- proof by contradiction
- if trying to prove a statement, assume the statement is not true and prove something that is clearly false. From this conclude that the original statement must be true.

proof techniques

- direct proof:
- start with known facts. repeatedly infer additional new facts until can conclude what you want to show.
- may divide work into cases
- proof of the contrapositive:
- if trying to prove an implication, prove the contrapositive instead
- proof by contradiction
- if trying to prove a statement, assume the statement is not true and prove something that is clearly false. From this conclude that the original statement must be true.

direct proof + cases : example

- claim: let n be any integer. Then $\mathrm{n}(\mathrm{n}+1)^{2}$ is state the proof technique (unless it's a direct proof)
- proof: The proof is by cases. Given an integer n, n is either even or odd.
- If n is even, then $\mathrm{n}=2 \mathrm{r}$ for some integer r . Then $n(n+1)^{2}=2 r(2 r+1)^{2}=2\left(r(2 r+1)^{2}\right)$, which is even.
- If n is odd, then $\mathrm{n}=2 r+1$ for some integer r. Then $n(n+1)^{2}=(2 r+1)(2 r+2)^{2}=(2 r+1)(2 r+2)(2 r+2)=2$ $((2 r+1)(r+1)(2 r+2))$, which is even.
- Since $n(n+1)^{2}$ is even regardless of whether n is eve conclude by stating or odd, $\mathrm{n}(\mathrm{n}+1)^{2}$ is even for all integers n .

direct proof : example

- claim: the binary representation of any odd integer ends with a 1.

representing numbers in different bases

- In base10 (decimal), every number is written as a sum of powers of 10 .
- For example, $205=2 * 10^{2}+0^{*} 10^{1}+5^{*} 10^{0}$
- More generally, in base 10:
- In base2 (binary), every number is written a a sum of powers of 2 .
- For example, $101=1^{*} 2^{2}+0^{*} 2^{1}+1^{*} 2^{0}$
- More generally, in base 2:
practice with decimal and binary

write in decimal

1. 1
2. 10
3. 100
4. 1011
5. 1100
6. 10101
write in binary
7. 3
8. 8
9. 10
10. 22
11. 37
12. 47

direct proof : example

- claim: If a number is odd, then its binary representation ends with a 1.
- proof:
- Let k be an arbitrary odd integer.
- Then there exists an integer r such that $k=2 r+1$.
- Now let $d_{n} \ldots d_{2} d_{1} d_{0}$ be the binary representation of r.
- The binary representation of $2 r$ is then $d_{n} \ldots d_{2} d_{1} d_{0} 0$, and
- The binary representation of $k=2 r+1=d_{n} \ldots d_{2} d_{1} d_{0} 1$.
- conclusion: Therefore the binary representation of any odd integer ends with a 1.

proof techniques

- direct proof:
- start with known facts. repeatedly infer additional new facts until can conclude what you want to show.
- may divide work into cases
- proof of the contrapositive:
- if trying to prove an implication, prove the contrapositive instead
- proof by contradiction
- if trying to prove a statement, assume the statement is not true and prove something that is clearly false. From this conclude that the original statement must be true.

proof of the contrapositive : example

- claim: If a number is odd, then its binary representation ends with a 1.
- proof: The claim states that if an integer k is odd, then its binary representation ends with a 1 . We prove the contrapositive: if the binary representation of a number k ends with a 0 then k is even.
- Let k be an integer whose binary representation ends with a 0 . Let $d_{n} \ldots d_{3} d_{2} d_{1} 0$ be the binary representation of k. Since the digits in a binary number represent powers of 2 , this means
- Therefore k is even. $=2\left(d_{n} \cdot 2^{n-1}+d_{n-1} \cdot 2^{n-2}+\ldots d_{2} \cdot 2^{1}+d_{1}\right)$
- We have proven the contrapositive and, therefore, the binary
representation of any odd integer ends with a 1.

if and only if: example

- prove the following claim by proving each direction separately. Use a direct proof in one direction and a proof of the contrapositive in the other.
- claim: let n be any integer. Then n is even if and only if n^{2} is even.

