csci54 – discrete math & functional programming proofs continued

on proof writing

proof: a convincing argument written for a particular audience

guidelines:

- unless it's a direct proof without cases, state what proof technique you're using
- define variables
- have a concluding statement

proving "for all" statements

- claim: if x and y are even integers, then x+y is an even integer
- claim: given any two integers x and y, if x and y are even then x+y is even.

- observation on proving "for all" statements
 - "let x be an element of S"
 - since true for any element of S, must be true for all elements of S

Above all, remember that your primary goal in writing is communication. Just as when you are programming, it is possible to write two solutions to a problem that both "work," but which differ tremendously in readability. Document! Comment your code; explain why this statement follows from previous statements. Make your proofs—and your code!—a pleasure to read.

CDMCS - end of section 4.3

direct proof: example (v1)

claim: If a number is odd, then its binary representation ends with a 1.

- proof:
 - Let k be an arbitrary odd integer.
 - Then there exists an integer r such that k=2r+1.
 - Now let d_n...d₂d₁d₀ be the binary representation of r.
 - ► The binary representation of 2r is then $d_n \dots d_2 d_1 d_0 0$, and
 - ► The binary representation of $k=2r+1=d_n...d_2d_1d_01$.
- conclusion: Therefore the binary representation of any odd integer ends with a 1.

direct proof: example (v2)

- claim: If a number is odd, then its binary representation ends with a 1.
- proof:
 - Let k be an arbitrary odd integer.
 - ▶ Then there exists an integer r such that k=2r+1.
 - ► Now let d_n...d₂d₁d₀ be the binary representation of r.
 - ► This means r = ...
 - ► So 2r = ...
 - The binary representation of 2r is therefore $d_n \dots d_2 d_1 d_0 0$, and
 - ► The binary representation of $k=2r+1=d_n...d_2d_1d_01$.
- conclusion: Therefore the binary representation of any odd
- integer ends with a 1.

direct proof: example (v3)

- claim: If a number is odd, then its binary representation ends with a 1.
- proof:
 - Let k be an arbitrary odd integer.
 - ▶ Then there exists an integer r such that k=2r+1.
 - Now let $d_n...d_2d_1d_0$ be the binary representation of r.
 - ► This means r = ...
 - ► So 2r = ... =
 - ▶ The binary representation of 2r is therefore $d_n...d_2d_1d_00$, and
 - ► The binary representation of $k=2r+1=d_n...d_2d_1d_01$.
- conclusion: Therefore the binary representation of any odd
- integer ends with a 1.

if and only if: example

- prove the following claim by proving each direction separately. Use a direct proof in one direction and a proof of the contrapositive in the other.
- claim: For all integers j and k, j and k are odd if and only if their product jk is odd.
- proof: Let j and k be arbitrary integers.
 - () If j and k are odd, then jk is odd
 - () If jk is odd, then j and k are odd
- Therefore for all integers j and k, j and k are odd if and only if jk is odd.

a way that things can go wrong

► Claim: 1=0

Proof. Suppose that 1 = 0. Then:

$$1 = 0$$

therefore, multiplying both sides by 0

$$0 \cdot 1 = 0 \cdot 0$$

and therefore,

$$0 = 0.$$
 \checkmark

And, indeed, 0 = 0. Thus the assumption that 1 = 0 was correct, and the theorem follows.

More examples, discussion in Chapter 4.5 of the book

- Material about proofs of plus a 0 = plus 0 a, plus a 1 = plus 1 a, plus a b = plus b a for haskell:
- plus 0 b = b
- plus a b = (plus (a-1) b) + 1

proof techniques

- direct proof:
 - start with known facts. repeatedly infer additional new facts until can conclude what you want to show.
 - may divide work into cases
- proof of the contrapositive:
 - if trying to prove an implication, prove the contrapositive instead
- proof by contradiction
 - Claim: p is logically equivalent to ¬p→⊥

proof techniques

- direct proof:
 - start with known facts. repeatedly infer additional new facts until can conclude what you want to show.
 - may divide work into cases
- proof of the contrapositive:
 - if trying to prove an implication, prove the contrapositive instead
- proof by contradiction
 - if trying to prove a statement, assume the statement is not true and prove something that is clearly false. From this conclude that the
- original statement must be true.

proof by contradiction – logic and example

- ▶ the proposition p is logically equivalent to $\neg p \rightarrow \bot$
- ▶ claim: The statement $\exists y$: $\forall x$: y > x is false.
- proof by contradiction:
 - assume the statement is True; we'll show this leads to a contradiction
 - ▶ let y* be a y for which the statement is True.
 - then y* must be larger than all real numbers x.
 - ▶ however, y^* is also a real number, so $y^* > y^*$.
 - this is a contradiction so the assumption that the statement is True must be wrong.
 - therefore the original statement is False.

Example from csci101

Theorem: If L is a context-free language, then:

```
\exists k \geq 1 \ (\forall \text{ strings } w \in L, \text{ where } |w| \geq k \ (\exists u, v, x, y, z \ (w = uvxyz, vy \neq \varepsilon, |vxy| \leq k, \text{ and } |vxy| \leq k, \text{ and } \forall q \geq 0 \ (uv^qxy^qz \text{ is in } L)))).
```

- used to prove that a language L is **not** context free
 - proof by contradiction: assume that L is context free. Then there must be a value k that satisfies the above theorem.
 - now show that such a k cannot exist

