csci54 - discrete math \& functional programming more logic, introduction to proofs

last time

- propositional logic:
- practice with logical equivalence
- introduction to predicate logic:
- definition of a predicate
" quantifiers: forall, exists
- theorems in predicate logic

from last time

- Exactly one of the following two propositions is a theorem. Which one?
(1) $[\forall x \in S: P(x) \vee Q(x)] \Leftrightarrow[\forall x \in S: P(x)] \vee[\forall x \in S: Q(x)]$
(2) $[\exists x \in S: P(x) \vee Q(x)] \Leftrightarrow[\exists x \in S: P(x)] \vee[\exists x \in S: Q(x)]$
- (2) is the theorem.
- Prove that your answer is correct.
- What is a proof?
- A convincing argument that something is true.

Solution. Claim (B) is a theorem. To prove it, we'll show that the left-hand side implies the right-hand side, and vice versa. (That is, we're proving $p \Leftrightarrow q$ by proving both $p \Rightarrow q$ and $q \Rightarrow p$, which is a legitimate proof because $p \Leftrightarrow q \equiv(p \Rightarrow q) \wedge(q \Rightarrow p)$.) Both proofs will use the technique of assuming the antecedent.

First, let's prove that $[\exists x \in S: P(x) \vee Q(x)]$ implies $[\exists x \in S: P(x)] \vee[\exists x \in S: Q(x)]$:
Suppose that $[\exists x \in S: P(x) \vee Q(x)]$ is true. Then there is some particular $x^{*} \in S$ for which either $P\left(x^{*}\right)$ or $Q\left(x^{*}\right)$. But in either case, we're done: if $P\left(x^{*}\right)$ then $\exists x \in S: P(x)$ because x^{*} satisfies the condition; if $Q\left(x^{*}\right)$ then $\exists x \in S: Q(x)$, again because x^{*} satisfies the condition.

Second, let's prove that $[\exists x \in S: P(x)] \vee[\exists x \in S: Q(x)]$ implies $[\exists x \in S: P(x) \vee Q(x)]$:
Suppose that $[\exists x \in S: P(x)] \vee[\exists x \in S: Q(x)]$ is true. Thus either there's an $x^{*} \in S$ such that $P\left(x^{*}\right)$ or an $x^{*} \in S$ such that $Q\left(x^{*}\right)$. That x^{*} suffices to make the left-hand side of (B) true.

- What makes something "a convincing argument"?

some definitions

- an integer k is even if and only if there exists an integer r such that $k=2 r$
- an integer k is odd if and only if there exists an integer r such that $k=2 r+1$
- $k \mid m$ if and only if there exists an integer r such that $m=k r$. This is equivalent to saying that " m mod $k=0$ " or that " k evenly divides $\mathrm{m} "$.
- an integer $k>1$ is prime if the only positive integers that evenly divide k are 1 and k itself.
- an integer $k>1$ is composite if it is not prime.
- an integer k is a perfect square if and only if there exists an integer r such that $k=r^{2}$

example 1

- Consider the statement "for all positive integers $n, 2 n=n^{2}$ "
- Why isn't this true?
- Consider $\mathrm{n}=3$
- Why is this a valid justification?
- How would you write this as a statement in predicate logic?

$$
\forall n \in \mathbb{Z}^{+}: 2 n=n^{2}
$$

- Showing that this statement is not true is the same as showing that its negation is true.

negating quantifiers

- The following are both theorems

$$
\begin{aligned}
& \neg[\forall x \in S: P(x)] \Leftrightarrow[\exists x \in S: \neg P(x)] \\
& \neg[\exists x \in S: P(x)] \Leftrightarrow[\forall x \in S: \neg P(x)]
\end{aligned}
$$

- practice: what is the negation of the following? simplify as much as possible.

$$
\exists x \in S: P(x) \vee Q(x)
$$

example 1 - revisited

- Consider the statement "for all positive integers $n, 2 n=n^{2}$ "
- How would you prove that this statement is false?
- Consider the following counterexample. If $n=3$, then $2 n=6$ and $n^{2}=9$.
* Since there exists a positive integer such that $2 n=/=n^{2}$, the original statement is false.

example 2

- Claim: let x be any integer. if x is a perfect square, then $4 x$ is a perfect square
- How could you write the claim as a statement in predicate logic?
- How would you prove the claim is true?
- Why is this justification valid?

assuming the antecedent, modus ponens

- assuming the antecedent.
- to show "if a then b", only need to show that if a is true, then b is true.
- two tautologies that are used repeatedly in proofs through a chain of reasonina.

$$
\begin{array}{ll}
(p \Rightarrow q) \wedge p \Rightarrow q & \text { Modus Ponens } \\
(p \Rightarrow q) \wedge \neg q \Rightarrow \neg p & \text { Modus Tollens }
\end{array}
$$

example 2 - revisited

- Claim: let x be any integer. if x is a perfect square, then $4 x$ is a perfect square
- How would you prove the claim is true?
- assume x is a perfect square (assuming the antecedent)
- then there exists an integer r such that $x=r^{2}$ (definition of perfect square, modus ponens)
- then $4 x=4 r^{2}=(2 r)^{2} \quad$ (algebra)
- therefore $4 x$ is a perfect square (definition of perfect square)
- in conclusion, for any integer x, if x is a perfect square then $4 x$ is a perfect square.

Nested quantifiers

- Let A be an array of n integers with 1-based indexing. What is the following asserting?

$$
\forall i \in\{1,2, \ldots, n\}:[\exists j \in\{1,2, \ldots, n\}:(i \neq j) \wedge(A[i]=A[j])]
$$

- How could you write the following using nested quantifiers?

Every program that was turned in failed at least one test case.

Nested quantifiers - questions

- What are the rules with nested quantifiers?
- Can you flip the order of nested quantifiers?
- What happens if you negate a nested quantifier?

Nested quantifiers - order sometimes matters

- Exatly one of the following is true. Which? Why?

$$
\begin{aligned}
& \exists y \in \mathbb{R}: \forall x \in \mathbb{R}: x<y \\
& \forall x \in \mathbb{R}: \exists y \in \mathbb{R}: x<y
\end{aligned}
$$

- However, if two or two , can flip order. Following are both thenrame

$$
\begin{aligned}
& \forall x \in S: \forall y \in T: P(x, y) \quad \Leftrightarrow \quad \forall y \in T: \forall x \in S: P(x, y) \\
& \exists x \in S: \exists y \in T: P(x, y) \quad \Leftrightarrow \quad \exists y \in T: \exists x \in S: P(x, y)
\end{aligned}
$$

Negating nested quantifiers

- Consider the following statement:

$$
\forall i \in\{1,2, \ldots, n\}:[\exists j \in\{1,2, \ldots, n\}:(i \neq j) \wedge(A[i]=A[j])]
$$

- Simplify the negation:
- $\neg \forall i \in\{1,2, \ldots, n\}:[\exists j \in\{1,2, \ldots, n\}:(i \neq j) \wedge(A[i]=A[j])]$

