csci54 – discrete math & functional programming propositional logic

Simplify each of the following Haskell expressions:

(a)	a && not a
(b)	a (not a && b)
(c)	(not a b) && (not b c) &&
	(not c not a) && (not c not b)

George Boole 1815-1864

On "True" and "False"

Iogic is the study of valid reasoning

The starting point:

A proposition is a statement that is either True or False.

What are examples of propositions that are True? False? Unknown?

On propositional logic

the study of propositions: how to formulate, evaluate, manipulate

atomic proposition: a proposition that is conceptually indivisible

- <u>compound proposition</u>: a proposition that is build up out of conceptually simpler propositions
 - How?

Creating compound propositions

- We can create more complex propositional statements using logical connectives
 - ▶ negation (not, ¬, ~)
 - ▶ conjunction (and, ∧)
 - disjunction (or, v)
 - ▶ implication (implies, \Rightarrow , \rightarrow)

Precedence rules:

- negation binds most tightly
- then conjunction
- then disjunction
- then implication

implication is rightassociative

In particular, a well-formed pro defined as:

 $\phi ::= T|F|(\neg \phi)|(\phi \land \phi)|(\phi \lor \phi)|(\phi \Rightarrow \phi)$

Evaluating compound propositional statements

Convenient to use a truth table to display the relationships between truth values of different propositions

Implication

- What does it mean to say "p implies q"?
 - ▶ p q is true if q is true or p is false $p \quad q \quad p \Rightarrow q$ T T T T T F F F F F T T F T
- What is the truth value of each of the following statements?
 - ▶ 1 + 1 = 2 implies that 2 + 3 = 5
 - ▶ 1 + 1 = 2 implies that 2 + 3 = 6
 - ▶ 1 + 1 = 3 implies that 2 + 3 = 5
 - ▶ 1 + 1 = 3 implies that 2 + 3 = 6

A little more on implications

- ►p q
 - "if p, then q"
 - "p implies q"
 - "p only if q"
 - "q whenever p"
 - ► "q, if p"
 - "q is necessary for p"
 - "p is sufficient for q"

Bidirectional implication p q

- "p if and only if q", "p iff q"
- True only when p and q have same truth value: either both true or
- both false.

- Since Sandra is wearing a soccer jersey, she must be a soccer player."
- This compound proposition is composed of 2 atomic propositions:
 - (1) = Sandra is wearing a soccer jersey
 - (2) = Sandra is a soccer player
- The compound proposition can written as:
 - ▶ (1) ⇔ (2)

inspired by:

https://philosophylopdor.odu/logic/diagram.guiz.html

Passwords

- "A password is valid only if it is at least 8 characters long, is not one that you have used previously, and contains at least 2 of the following: a number, a lowercase character, an uppercase character."
- This is a compound proposition that is composed of how many atomic propositions?
- What are the 6 atomic propositions?
- How can you write the compound proposition in terms of the atomic propositions?

categorizing well-formed formulas (wff)

- A formula in propositional logic is one of:
 - tautology (valid): if it evalutes to T in all cases
 - satisfiable: evaluates to T in some cases
 - contingency (falsifiable): evaluates to F in some cases
 - contradiction (unsatisfiable): evaluates to F in all cases
- Consider the following formula:

 $(p \lor q) \Rightarrow (\neg p \land \neg q)$

Which of the following describes the formula: tautology, satisfiable, contingency, contradiction? Why?

$\begin{array}{l} (p \Rightarrow q) \land p \Rightarrow q \\ (p \Rightarrow q) \land \neg q \Rightarrow \neg p \end{array}$	Modus Ponens Modus Tollens	$(p \lor q) \land \neg p \Rightarrow q$ $(p \Rightarrow q) \land (\neg p \Rightarrow q) \Rightarrow q$
$p \lor \neg p$ $p \Leftrightarrow \neg \neg p$ $p \Leftrightarrow p$	Law of the Excluded Middle Double Negation	$(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ $(p \Rightarrow q) \land (p \Rightarrow r) \Leftrightarrow p \Rightarrow q \land r$ $(p \Rightarrow q) \lor (p \Rightarrow r) \Leftrightarrow p \Rightarrow q \lor r$
$p \Rightarrow p \lor q$ $p \land q \Rightarrow p$		$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$ $p \Rightarrow (q \Rightarrow r) \Leftrightarrow p \land q \Rightarrow r$

Two propositions are <u>logically equivalent</u> (written) if they have exactly identical truth tables (i.e. their truth values are the same under every truth assignment)

Simplify each of the following Haskell expressions:

(a)	a && not a
(b)	a (not a && b)
(c)	(not a b) && (not b c) &&
	(not c not a) && (not c not b)

some logically equivalent propositions

Commutativity	$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$		$q \lor r) \equiv (p \land q) \lor (p \land r)$ $q \land r) \equiv (p \lor q) \land (p \lor r)$
	$p \oplus q \equiv q \oplus p$ $p \Leftrightarrow q \equiv q \Leftrightarrow p$	Contrapositive p	$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$
p	$ \begin{array}{l} \lor (q \lor r) \ \equiv \ (p \lor q) \lor r \\ \land (q \land r) \ \equiv \ (p \land q) \land r \\ \oplus \ (q \oplus r) \ \equiv \ (p \oplus q) \oplus r \end{array} $	$p \Rightarrow (q$	$p \Rightarrow q \equiv \neg p \lor q$ $\Rightarrow r) \equiv p \land q \Rightarrow r$ $p \Leftrightarrow q \equiv \neg p \Leftrightarrow \neg q$
<i>p ⇐</i>	$p \Leftrightarrow (q \Leftrightarrow r) \equiv (p \Leftrightarrow q) \Leftrightarrow r$	Mutual Implication $(p \Rightarrow q) \land (q$	$\Rightarrow p) \equiv p \Leftrightarrow q$
Idempotence	$\begin{array}{l} p \lor p \ \equiv \ p \\ p \land p \ \equiv \ p \end{array}$		$(p \wedge q) \equiv \neg p \lor \neg q$ $(p \lor q) \equiv \neg p \land \neg q$

$$(\neg a \lor b) \land (\neg b \lor c) \land (\neg c \lor \neg a) \land (\neg c \lor \neg b)$$