cscib4 — discrete math & functional programming
propositional logic

Simplify each of the following Haskell expressions:

a && not a
a || (not a && b)

(not a || b) && (not b || c) &&
(not ¢ || not a) && (not ¢ || not b)

~—~ T T
o O
— ~— —

George
Boole
1815-1864

On "True'" and "False"

> logic Is the study of valid reasoning

> The starting point:

A proposition is a statement that is either True or False.

> What are examples of propositions that are True? False?
Unknown?

On propositional logic

> the study of propositions: how to formulate, evaluate,
manipulate

> atomic proposition: a proposition that is conceptually
indivisible

> compound proposition: a proposition that is build up out of
conceptually simpler propositions

How?

Creating compound propositions

> We can create more complex propositional statements using
logical connectives
negation (not, —, ~)
conjunction (and, A)

Precedence rules:
* negation binds most

onjunct tightly
disjunction (or, v) * then conjunction
implication (implies, =, -) then disjunction

 then implication

implication is right-
> In particular, a well-formed pro| __associative
defined as:

¢ ==TIF|(=9)[(p A d)|(¢V 9)|(¢ = ¢)

Evaluating compound propositional statements

> Convenient to use a truth table to display the relationships
between truth values of different propositions

> Truth table for negatiod® || P
T | F
Fil T
plallpAda|pVg
> For conjunction (and) and disjunction (@r):T T T
T|F F T
F|T F T
¢ ==T|F[(=¢)|(¢ A P)l(@V @)|(¢ = ¢)

Implication

> What does it mean to say "p implies g"?

p qistrueif qistrue or p is false plalp=q
T | T T
T | F F
F | T T
| F T

> What is the truth value of each of the following statements?
1+ 1=2impliesthat2 +3 =5
1+ 1=2impliesthat2 +3 =6
1+ 1=3impliesthat2 +3 =5
1+ 1=3impliesthat2+3 =06

A little more on implications

"pq
“if p, then q”
“p implies g”
“ponlyif q”
“g whenever p”
“q, if p"
“Q is necessary for p”
“p Is sufficient for q”

> Bidirectional implication p q
"p if and only if g", "p iff 9"

True only when p and g have same truth value: either both true or
both false.

Example

> "Since Sandra is wearing a soccer jersey, she must be a soccer
player."

> This compound proposition is composed of 2 atomic
propositions:
(1) = Sandra is wearing a soccer jersey
(2) = Sandra is a soccer player

> The compound proposition can written as:
(1) « (2)

inspired by:

[P Y Y Y S L R PR R R Y J L A [N PR B |

Passwords

> "A password is valid only if it is at least 8 characters long, is
not one that you have used previously, and contains at least 2
of the following: a number, a lowercase character, an
uppercase character.”

> This is a compound proposition that is composed of how many
atomic propositions?

> What are the 6 atomic propositions?

* How can you write the compound proposition in terms of the
atomic propositions?

categorizing well-formed formulas (wif)

> A formula in propositional logic is one of:
tautology (valid): if it evalutes to T in all cases
satisfiable: evaluates to T in some cases
contingency (falsifiable): evaluates to F in some cases
contradiction (unsatisfiable): evaluates to F in all cases

> Consider the following formula:
(pva)=(—pA—Q)

> Which of the following describes the formula: tautology,
satisfiable, contingency, contradiction? Why?

a collection of tautologies

(p=q9) ANp=g¢q Modus Ponens PV A-p=gq

(p = q) N—q = -p Modus Tollens =g N(p=>q)=q
=>qg)N\N(g=>r)= =>r

pV —p Law of the Excluded Middle P=ani) g)

p & —p Double Negation =g ANp=>r)ep=>qgAr

p&p P=qVp=>r)ep=>qVr
pA(gVr)e (pAg)V(pAr)

p=pVq

p=>(@=>rpAg=>r
pPANq=p

logical equivalence

> Two propositions are logically equivalent (written) if they
have exactly identical truth tables (i.e. their truth values are
the same under every truth assignment)

Simplify each of the following Haskell expressions:

(a) a && not a
(b) a || (not a && b)
(c) (not a || b) && (not b || ¢) &&

(not ¢ || not a) && (not ¢ || not b)

some logically equivalent propositions

Commutativity pVqg =qVp
PANq = qAp
pdPg =qOp
P<=q9 =4qg=>p

Associativity pV (gVr) = (pVq)V
pA(GAT) = (P/\Q)/\”
Pro(q®r) = p®q &
pe(@gern) =peqger
Idempotence pVp =p
PApD =p

Distribution of A over V pA(gVr) = (pAq V(pAT)
Distribution of V over A pV(gAr) = Vg A(pVr)
Contrapositive p=>qg = q= —p
p=9="PVg
p=>(@=>r) =pAg=r
P<=qg = "P=q
Mutual Implication (p =>g) A(g=p) = p&¢q
De Morgan’s Laws ~(pAq) = pVq

(~a Vb) A (=bVe) A

(—cV —a) A (—cV —b)

	csci54 – discrete math & functional programming propositional l
	Slide 2
	Slide 3
	On "True" and "False"
	On propositional logic
	Creating compound propositions
	Evaluating compound propositional statements
	Implication
	A little more on implications
	Example
	Passwords
	Slide 12
	categorizing well-formed formulas (wff)
	a collection of tautologies
	logical equivalence
	some logically equivalent propositions

