cscib4 — discrete math & functional programming
propositional logic




Simplify each of the following Haskell expressions:

a && not a
a || (not a && b)

(not a || b) && (not b || c) &&
(not ¢ || not a) && (not ¢ || not b)

~—~ T T
o O
— ~— —



George
Boole
1815-1864



On "True'" and "False"

> logic Is the study of valid reasoning

> The starting point:

A proposition is a statement that is either True or False.

> What are examples of propositions that are True? False?
Unknown?



On propositional logic

> the study of propositions: how to formulate, evaluate,
manipulate

> atomic proposition: a proposition that is conceptually
indivisible

> compound proposition: a proposition that is build up out of
conceptually simpler propositions

How?




Creating compound propositions

> We can create more complex propositional statements using
logical connectives
negation (not, —, ~)
conjunction (and, A)

Precedence rules:
* negation binds most

onjunct tightly
disjunction (or, v) * then conjunction
implication (implies, =, -)  then disjunction

 then implication

implication is right-
> In particular, a well-formed pro| __associative
defined as:

¢ ==TIF|(=9)[(p A d)|(¢V 9)|(¢ = ¢)




Evaluating compound propositional statements

> Convenient to use a truth table to display the relationships
between truth values of different propositions

> Truth table for negatiod® || P
T | F
Fil T
plallpAda|pVg
> For conjunction (and) and disjunction (@r):T T T
T|F F T
F|T F T
¢ ==T|F[(=¢)|(¢ A P)l(@V @)|(¢ = ¢)



Implication

> What does it mean to say "p implies g"?

p qistrueif qistrue or p is false plalp=q
T | T T
T | F F
F | T T
| F T

> What is the truth value of each of the following statements?
1+ 1=2impliesthat2 +3 =5
1+ 1=2impliesthat2 +3 =6
1+ 1=3impliesthat2 +3 =5
1+ 1=3impliesthat2+3 =06



A little more on implications

"pq
“if p, then q”
“p implies g”
“ponlyif q”
“g whenever p”
“q, if p"
“Q is necessary for p”
“p Is sufficient for q”

> Bidirectional implication p q
"p if and only if g", "p iff 9"

True only when p and g have same truth value: either both true or
both false.



Example

> "Since Sandra is wearing a soccer jersey, she must be a soccer
player."

> This compound proposition is composed of 2 atomic
propositions:
(1) = Sandra is wearing a soccer jersey
(2) = Sandra is a soccer player

> The compound proposition can written as:
(1) « (2)

inspired by:
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Passwords

> "A password is valid only if it is at least 8 characters long, is
not one that you have used previously, and contains at least 2
of the following: a number, a lowercase character, an
uppercase character.”

> This is a compound proposition that is composed of how many
atomic propositions?

> What are the 6 atomic propositions?

* How can you write the compound proposition in terms of the
atomic propositions?






categorizing well-formed formulas (wif)

> A formula in propositional logic is one of:
tautology (valid): if it evalutes to T in all cases
satisfiable: evaluates to T in some cases
contingency (falsifiable): evaluates to F in some cases
contradiction (unsatisfiable): evaluates to F in all cases

> Consider the following formula:
(pva)=(—pA—Q)

> Which of the following describes the formula: tautology,
satisfiable, contingency, contradiction? Why?



a collection of tautologies

(p=q9) ANp=g¢q Modus Ponens PV A-p=gq

(p = q) N—q = -p Modus Tollens =g N(p=>q)=q
=>qg)N\N(g=>r)= =>r

pV —p Law of the Excluded Middle P=ani ) g )

p & —p Double Negation =g ANp=>r)ep=>qgAr

p&p P=qVp=>r)ep=>qVr
pA(gVr)e (pAg)V(pAr)

p=pVq

p=>(@=>rpAg=>r
pPANq=p




logical equivalence

> Two propositions are logically equivalent ( written ) if they
have exactly identical truth tables (i.e. their truth values are
the same under every truth assignment)

Simplify each of the following Haskell expressions:

(a) a && not a
(b) a || (not a && b)
(c) (not a || b) && (not b || ¢) &&

(not ¢ || not a) && (not ¢ || not b)



some logically equivalent propositions

Commutativity pVqg =qVp
PANq = qAp
pdPg =qOp
P<=q9 =4qg=>p

Associativity pV (gVr) = (pVq)V
pA(GAT) = (P/\Q)/\”
Pro(q®r) = p®q &
pe(@gern) =peqger
Idempotence pVp =p
PApD =p

Distribution of A over V pA(gVr) = (pAq V(pAT)
Distribution of V over A pV(gAr) = Vg A(pVr)
Contrapositive p=>qg = q= —p
p=9="PVg
p=>(@=>r) =pAg=r
P<=qg = "P=q
Mutual Implication (p =>g) A(g=p) = p&¢q
De Morgan’s Laws ~(pAq) = pVq

(~a Vb) A (=bVe) A

(—cV —a) A (—cV —b)
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