
In-Class Worksheet

Discrete Math & Functional Programming� CSCI 054� Spring 2024

Instructor: Osborn

What are the types of the following functions?

f _ [] = []

f y (x:xs) = [y..x] ++ xs

g [] = ""

g (x:xs) = let z = xs ++ "s" in (g xs) ++ z

h _ [] = []

h b (x:xs)

| b = x:(h False xs)

| otherwise = h True xs

j x = [(a,b) | a <- [1..x], b <- [(-1),(-2)..(-5)], b * b == a]



Write a function exists :: (a -> Bool) -> [a] -> Bool which takes a predicate and
a list and returns True if and only if at least one element in the list satis�es the predicate.

� Using pattern matching? Guards?

� Using foldr/foldl?

� Using �lter/map?

How would you use exists to write a function greaterThan that takes an element and a
list and returns True if any elements in the list is larger than the given element?

greaterThan :: Ord a => a -> [a] -> Bool

2



What do the following evaluate to?

foldr (-) 0 [8,7,6,5]

foldl (-) 0 [8,7,6,5]

Use foldr to de�ne a function sumSquares which takes an integer n as its argument and
returns the sum of the squares of the integers from 1 to n. Do this both with and without
map.

3


