
csci54 – discrete math & functional programming
review

 lists, tuples
 types
 syntax:

 list comprehensions
 pattern matching
 guards
 where
 let-in

 higher-order functions
 map, filter
 foldr, foldl
 anonymous functions

Recursion throughout

Group review suggestions
 type system, type signatures (x4)

 types vs. type classes
 type classes, "main type classes" (x2)
 when to use Num, Integral, Int, Integer,

etc
 fromIntegral
 intuition for how Haskell derives type

signature
 higher order functions (x3)

 foldr vs. foldl (x2)
 filter (especially with multiple conditions)
 types of higher order functions (x2)

 curried functions (x2)
 example of "only one parameter" in

function that takes multiple parameters

 specific constructs
 guards
 where
 let
 list comprehensions (x2)
 anonymous functions

 working with lists
 difference between list recursion

and pattern matching
 examples where things are taken

off of the end of the list, such as
using init

 tail vs. last
 question 2 part 2

types and type classes
 examples of types:

 Bool, Int, Integer, Char, String, Float, Rational
 [Bool], (Int, Char), ([[Float]], (Int,Int), [Char])

 examples of type classes:
 Num, Integral
 Eq, Ord, Enum

f _ [] = []
f y (x:xs) = [y..x] ++ xs

g [] = ""
g (x:xs) = let z = xs ++ "s" in (g xs) ++ z

h _ [] = []
h b (x:xs)
 | b = x:(h False xs)
 | otherwise = h True xs

j x = [(a,b) | a <- [1..x], b <- [(-1),(-2)..(-5)], b * b == a]

exists
 Write a function exists :: (a -> Bool) -> [a] -> Bool

which takes a predicate and a list and returns True if and only
if at least one element in the list satisfies the predicate.
 in a way that uses pattern matching? guards?
 in a way that uses foldr? foldl?
 in a way that uses anonymous functions?
 in a way that uses a filter and/or map?

greaterThan
 Write a function exists :: (a -> Bool) -> [a] -> Bool

which takes a predicate and a list and returns True if and only
if at least one element in the list satisfies the predicate.

 How would you use exists to write a function greaterThan
that takes an element and a list and returns True if any
element in the list is larger than the given element?

greaterThan :: Ord a => a -> [a] -> Bool

folds
 What do the following evaluate to?

 Use foldr to define a function sumSquares which takes an
integer n as its argument and returns the sum of the squares
of the integers from 1 to n. Do this with and without map

foldr (-) 0 [8,7,6,5]

foldl (-) 0 [8,7,6,5]

	csci54 – discrete math & functional programming review
	Slide 2
	Group review suggestions
	types and type classes
	Slide 5
	exists
	greaterThan
	folds

