
csci54 – discrete math & functional programming
review

 lists, tuples
 types
 syntax:

 list comprehensions
 pattern matching
 guards
 where
 let-in

 higher-order functions
 map, filter
 foldr, foldl
 anonymous functions

Recursion throughout

Group review suggestions
 type system, type signatures (x4)

 types vs. type classes
 type classes, "main type classes" (x2)
 when to use Num, Integral, Int, Integer,

etc
 fromIntegral
 intuition for how Haskell derives type

signature
 higher order functions (x3)

 foldr vs. foldl (x2)
 filter (especially with multiple conditions)
 types of higher order functions (x2)

 curried functions (x2)
 example of "only one parameter" in

function that takes multiple parameters

 specific constructs
 guards
 where
 let
 list comprehensions (x2)
 anonymous functions

 working with lists
 difference between list recursion

and pattern matching
 examples where things are taken

off of the end of the list, such as
using init

 tail vs. last
 question 2 part 2

types and type classes
 examples of types:

 Bool, Int, Integer, Char, String, Float, Rational
 [Bool], (Int, Char), ([[Float]], (Int,Int), [Char])

 examples of type classes:
 Num, Integral
 Eq, Ord, Enum

f _ [] = []
f y (x:xs) = [y..x] ++ xs

g [] = ""
g (x:xs) = let z = xs ++ "s" in (g xs) ++ z

h _ [] = []
h b (x:xs)
 | b = x:(h False xs)
 | otherwise = h True xs

j x = [(a,b) | a <- [1..x], b <- [(-1),(-2)..(-5)], b * b == a]

exists
 Write a function exists :: (a -> Bool) -> [a] -> Bool

which takes a predicate and a list and returns True if and only
if at least one element in the list satisfies the predicate.
 in a way that uses pattern matching? guards?
 in a way that uses foldr? foldl?
 in a way that uses anonymous functions?
 in a way that uses a filter and/or map?

greaterThan
 Write a function exists :: (a -> Bool) -> [a] -> Bool

which takes a predicate and a list and returns True if and only
if at least one element in the list satisfies the predicate.

 How would you use exists to write a function greaterThan
that takes an element and a list and returns True if any
element in the list is larger than the given element?

greaterThan :: Ord a => a -> [a] -> Bool

folds
 What do the following evaluate to?

 Use foldr to define a function sumSquares which takes an
integer n as its argument and returns the sum of the squares
of the integers from 1 to n. Do this with and without map

foldr (-) 0 [8,7,6,5]

foldl (-) 0 [8,7,6,5]

	csci54 – discrete math & functional programming review
	Slide 2
	Group review suggestions
	types and type classes
	Slide 5
	exists
	greaterThan
	folds

