I cscib4 — discrete math & functional programming

lambdas and folds

Studying for the checkpoint (a week from today)

> Checkpoint will be closed everything (including, for example,
calculators) except you can have one double-sided 8.5"x11"
page of notes and something to write with (pen, pencil).

> Suggestions for reviewing

Look over material
topics from lecture/problem sets; more detail in textbook

do problems on the material: worksheets, group assignments, problem set
problems

Practice writing down solutions on paper in full

duplicate the feeling of seeing a completely new problem and having to write
something down

come up with variations of problems you've seen (e.qg. different problems or
solving the same problem in different way)

> Will post study guide later today

practice problem from last time

> The mapish function takes a list of functions and a single
element x. It then returns a list of the results of applying each

function to X. [ghci> mapish [(+1), (*3)] 16
[11, 30]

> Implement the mapish function. What is the type of the mapish
function?

mapish :: la->bl ->a -> bl use mapish to implement a
o (F:Fe) X function f that tak mber
mapish (f:fs) x = (f x) : (mapish fs x) | '4NCUON at takes a numobe

X and computes:
mapish' :: [(a->b)] -> a -> [b] fl(x) = x2 +1
mapish' fs x = [f x | f <- fs] f2(x) = 4x-10

lambdas (aka anonymous functions)

> functions that don't have names

> functions that you use once in the context of some other
functio

ghci> headA x = (head x) == 'a’
ghCi> filter headA [HabH’ "aaaaa", nbn]

ghci> filter (\y -> (head y) == 'a') ["ab", "aaaaa", "b"]

> syntax: (\a b -> (a * b + 10)
starts with \ (meant to resemble A).

-> separates parameters from what the function evaluates to

lambdas (aka anonymous functions)

> note that iIf we wanted a function headA such that it would take
out the elements that started with the character 'A', we could
define it as follows:

ghci> headA = filter (\y -> (head y) == 'A'")

> practice: what is the type of the function foo? what does it do?

foo y zs = map (\x -> xX7y) zs

One more built-in higher order function

> map, filter, reduce

> How would you write a function sumList that returned the sum
of a list of integers? prodList the returned the product of a list

OfintegerS? sumList [] = ©
sumList (x:xs) = x + (sumList xs)

prodList [] =1
prodList (x:xs) = x * (prodList xs)

what is similar?
what is different?

> In Haskell "reduce" is referred to as "fold"

foldr' :: (b -> b ->b) ->b ->[b] ->Db

Right fold (toldr)

foldr' :: (b -> b ->b) ->b ->[b] ->Db

> foldr (+) 0 [3,2,6]
very, very informally can think:
[3,2,6] is really 3:2:6:[].
Replace [] with the base case 0 (sometimes called “seed” value)
Replace : with the operator (+)

associate to the right
3+ (2+(6+0))

> how would you write sumList and prodList using foldr?

foldr and foldl

foldr' :: (b -> b ->b) ->b ->[b] ->Db

> foldr (+) 0 [3,2,6]
informally can think of as: [3,2,6] is really 3:2:6:[]. Replace [] with
the base case and the : with the operator

associate to the right
3+ (2+(6+0))

> foldl - same idea but associates to the left

foldr and foldl

foldr' :: (a ->a ->a) ->a -> [a] -> a
> foldr f x [yl, y2, ... yk]l = f yl (fy2 (... (fykx) ...))
foldl' :: (a ->a ->a) ->a -> [a] -> a
> foldl f x [yl, y2, ... yk]l = T (... (f (f xyl) y2) ...) yk
> foldr (+) 0 [3,2,6]
> foldl (+) 0 [3,2,6]

practice with folds

foldr f x [yl, y2, ... yk] =T yl (fy2 (... (fykx) ...))

foldl f x [yl, y2, ... ykl]

f (... (f (fxvyl) y2) ...) yk

> The following evaluate to two different values:
foldr (™) 1 [2,3]
foldl (©) 1 [2,3]

> What do they evaluate to and why?

and a hint of something more . . .
> foldr f x [yl, y2, ... yk]l = f yl (fy2 (... (fykx) ...))

> what does the following do?

foldr (\ s -> 1 + s) 0 "abcde"

> what does this tell you about the type signature?
foldr'' :: (@ ->b ->Db) ->b ->[a] ->D

> (but really it's this:

foldr :: Foldable t == (a -> b ->b) ->b ->ta ->b

)

	csci54 – discrete math & functional programming lambdas and fol
	Studying for the checkpoint (a week from today)
	Slide 3
	practice problem from last time
	lambdas (aka anonymous functions)
	lambdas (aka anonymous functions) (2)
	Slide 7
	One more built-in higher order function
	Slide 9
	Right fold (foldr)
	foldr and foldl
	foldr and foldl (2)
	practice with folds
	and a hint of something more . . .

