
csci54 – discrete math & functional programming
lambdas and folds

Studying for the checkpoint (a week from today)
 Checkpoint will be closed everything (including, for example,

calculators) except you can have one double-sided 8.5"x11"
page of notes and something to write with (pen, pencil).

 Suggestions for reviewing
 Look over material

 topics from lecture/problem sets; more detail in textbook
 do problems on the material: worksheets, group assignments, problem set

problems
 Practice writing down solutions on paper in full

 duplicate the feeling of seeing a completely new problem and having to write
something down

 come up with variations of problems you've seen (e.g. different problems or
solving the same problem in different way)

 Will post study guide later today

practice problem from last time
 The mapish function takes a list of functions and a single

element x. It then returns a list of the results of applying each
function to x.

 Implement the mapish function. What is the type of the mapish
function?

ghci> mapish [(+1), (*3)] 10
[11, 30]

mapish :: [a->b] -> a -> [b]
mapish [] _ = []
mapish (f:fs) x = (f x) : (mapish fs x)

mapish' :: [(a->b)] -> a -> [b]
mapish' fs x = [f x | f <- fs]

use mapish to implement a
function f that takes a number
x and computes:

f1(x) = x2 +1
f2(x) = 4x-10

lambdas (aka anonymous functions)
 functions that don't have names
 functions that you use once in the context of some other

function

 syntax:
starts with \ (meant to resemble λ).

 -> separates parameters from what the function evaluates to

ghci> headA x = (head x) == 'a'
ghci> filter headA ["ab", "aaaaa", "b"]

ghci> filter (\y -> (head y) == 'a') ["ab", "aaaaa", "b"]

\a b -> (a * b + 10)

lambdas (aka anonymous functions)
 note that if we wanted a function headA such that it would take

out the elements that started with the character 'A', we could
define it as follows:

 practice: what is the type of the function foo? what does it do?

ghci> headA = filter (\y -> (head y) == 'A')

foo y zs = map (\x -> x^y) zs

One more built-in higher order function
 map, filter, reduce
 How would you write a function sumList that returned the sum

of a list of integers? prodList the returned the product of a list
of integers?

 what is similar?
 what is different?

 in Haskell "reduce" is referred to as "fold"

sumList [] = 0
sumList (x:xs) = x + (sumList xs)

prodList [] = 1
prodList (x:xs) = x * (prodList xs)

foldr' :: (b -> b -> b) -> b -> [b] -> b

Right fold (foldr)

 foldr (+) 0 [3,2,6]
 very, very informally can think:

 [3,2,6] is really 3:2:6:[].
 Replace [] with the base case 0 (sometimes called “seed” value)
 Replace : with the operator (+)

 associate to the right
 3 + (2 + (6 + 0))

 how would you write sumList and prodList using foldr?

foldr' :: (b -> b -> b) -> b -> [b] -> b

foldr and foldl

 foldr (+) 0 [3,2,6]
 informally can think of as: [3,2,6] is really 3:2:6:[]. Replace [] with

the base case and the : with the operator
 associate to the right
 3 + (2 + (6 + 0))

 foldl - same idea but associates to the left

foldr' :: (b -> b -> b) -> b -> [b] -> b

foldr and foldl

 foldr f x [y1, y2, ... yk] = f y1 (f y2 (... (f yk x) ...))

 foldl f x [y1, y2, ... yk] = f (... (f (f x y1) y2) ...) yk

 foldr (+) 0 [3,2,6]
 foldl (+) 0 [3,2,6]

foldr' :: (a -> a -> a) -> a -> [a] -> a

foldl' :: (a -> a -> a) -> a -> [a] -> a

practice with folds

 The following evaluate to two different values:
 foldr (^) 1 [2,3]
 foldl (^) 1 [2,3]

 What do they evaluate to and why?

foldr f x [y1, y2, ... yk] = f y1 (f y2 (... (f yk x) ...))

foldl f x [y1, y2, ... yk] = f (... (f (f x y1) y2) ...) yk

and a hint of something more . . .
 foldr f x [y1, y2, ... yk] = f y1 (f y2 (... (f yk x) ...))

 what does the following do?

 what does this tell you about the type signature?

 (but really it's this:

)

foldr'' :: (a -> b -> b) -> b -> [a] -> b

foldr (_ s -> 1 + s) 0 "abcde"

foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

	csci54 – discrete math & functional programming lambdas and fol
	Studying for the checkpoint (a week from today)
	Slide 3
	practice problem from last time
	lambdas (aka anonymous functions)
	lambdas (aka anonymous functions) (2)
	Slide 7
	One more built-in higher order function
	Slide 9
	Right fold (foldr)
	foldr and foldl
	foldr and foldl (2)
	practice with folds
	and a hint of something more . . .

