
csci54 – discrete math & functional programming
lambdas and folds

map and filter (from last time)
 map :: (a -> b) -> [a] -> [b]

 takes a function that maps elements of type a to type b
 applies the function to every element in a list of type a and returns a

list of the results (which have type b)

 filter :: (a -> Bool) -> [a] -> [a]
 takes a function that maps elements of type a to True/False (a

predicate)
 applies the function to every element in a list of type a and returns

only those elements for which the function returns True

ghci> map length ["ab", "aaaaa", "b"]
ghci> map (^3) [1,3,6]

ghci> headA x = (head x) == 'a'
ghci> filter headA ["ab", "aaaaa", "b"]

Curried functions
 Every function in Haskell only takes one parameter (!!)
 What does that mean?

ghci> mult x y z = x * y * z

ghci> mult x y z = x * y * z
ghci> let mult10 = mult 2 5 in map mult10 [1,2,3]

map and filter
 map :: (a -> b) -> [a] -> [b]

 takes a function that maps elements of type a to type b
 applies the function to every element in a list of type a and returns a

list of the results (which have type b)

 filter :: (a -> Bool) -> [a] -> [a]
 takes a function that maps elements of type a to True/False (a

predicate)
 applies the function to every element in a list of type a and returns

only those elements for which the function returns True

 how would you implement map? filter?

practice problem
 The mapish function takes a list of functions and a single

element x. It then returns a list of the results of applying each
function to x. Implement the mapish function.

 what is the type of the mapish function?

ghci> mapish [(+1), (*3)] 10
[11, 30]

What if you wanted to mapish:
f1(x) = x2 +1
f2(x) = 4x-10

lambdas (aka anonymous functions)
 functions that don't have names
 functions that you use once in the context of some other

function

 syntax:
 starts with \ (meant to resemble λ).
 -> separates parameters from what the function evaluates to

ghci> headA x = (head x) == 'a'
ghci> filter headA ["ab", "aaaaa", "b"]

ghci> filter (\y -> (head y) == 'a') ["ab", "aaaaa", "b"]

\a b -> (a * b + 10)

lambdas (aka anonymous functions)
 note that if we wanted a function headA such that it would take

out the elements that started with the character 'A', we could
define it as follows:

 practice: what is the type of the function foo? what does it do?

ghci> headA = filter (\y -> (head y) == 'A')

foo y zs = map (\x -> x^y) zs

One more built-in higher order function
 map, filter, reduce

 How would you write a function sumList that returned the sum
of a list of integers? prodList the returned the product of a list
of integers?

 what is similar?
 what is different?

 in Haskell "reduce" is referred to as "fold"

sumList [] = 0
sumList (x:xs) = x + (sumList xs)

prodList [] = 1
prodList (x:xs) = x * (prodList xs)

foldr' :: (b -> b -> b) -> b -> [b] -> b

Right fold (foldr)

 foldr (+) 0 [3,2,6]
 very, very informally can think:

 [3,2,6] is really 3:2:6:[].
 Replace [] with the base case 0 (sometimes called “seed” value)
 Replace : with the operator (+)

 associate to the right
 3 + (2 + (6 + 0))

 how would you write sumList and prodList using foldr?

foldr' :: (b -> b -> b) -> b -> [b] -> b

foldr and foldl

 foldr (+) 0 [3,2,6]
 informally can think of as: [3,2,6] is really 3:2:6:[]. Replace [] with

the base case and the : with the operator
 associate to the right
 3 + (2 + (6 + 0))

 foldl - same idea but associates to the left
 So the seed value also goes in at the leftmost position

foldr' :: (b -> b -> b) -> b -> [b] -> b

foldr and foldl

 foldr f x [y1, y2, ... yk] = f y1 (f y2 (... (f yk x) ...))

 foldl f x [y1, y2, ... yk] = f (... (f (f x y1) y2) ...) yk

 foldr (+) 0 [3,2,6]
 foldl (+) 0 [3,2,6]

foldr' :: (a -> a -> a) -> a -> [a] -> a

foldl' :: (a -> a -> a) -> a -> [a] -> a

practice with folds

 The following evaluate to two different values:
 foldr (^) 1 [2,3]
 foldl (^) 1 [2,3]

 What do they evaluate to and why?

foldr f x [y1, y2, ... yk] = f y1 (f y2 (... (f yk x) ...))

foldl f x [y1, y2, ... yk] = f (... (f (f x y1) y2) ...) yk

and a hint of something more . . .
 foldr f x [y1, y2, ... yk] = f y1 (f y2 (... (f yk x) ...))

 what does the following do?

 what does this tell you about the type signature?

 (but really it's this:

)

foldr'' :: (a -> b -> b) -> b -> [a] -> b

foldr (_ s -> 1 + s) 0 "abcde"

foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

	csci54 – discrete math & functional programming lambdas and fol
	map and filter (from last time)
	Curried functions
	Slide 4
	map and filter
	practice problem
	Slide 7
	lambdas (aka anonymous functions)
	lambdas (aka anonymous functions) (2)
	Slide 10
	One more built-in higher order function
	Slide 12
	Right fold (foldr)
	foldr and foldl
	foldr and foldl (2)
	practice with folds
	and a hint of something more . . .

