
Discrete Math & Functional Programming� CSCI 054� Spring 2025
Instructor: Osborn

Homework 3 (23 point(s))
Due: 11:59PM on Sunday

� For this assignment you should work in a pair. Only one of you should turn in the
code on Gradescope, but that person should make sure to add everyone else as a
collaborator.

� Please make sure you understand the collaboration rules. In particular, a given
pair/triple should never be looking at any one else's working code or anything func-
tionally equivalent (e.g. listening to them read out their code, looking for samples on
whiteboards or online, asking the TA to check against the solutions, etc). If you have
any questions, you are expected to check with Professor Osborn beforehand!

� The template �le week03-ps-template.hs has the types for each of the functions.
There is a comment above each that simply names the function. Make sure to augment
that comment with a description of what the function does. This is in addition to
other comments you might want to include in your �le.

� The only list functions that you are allowed to use in your code are: head, tail,
length, and reverse.

1. [14 point(s)] Luhn algorithm

The Luhn Algorithm is an algorithm for verifying the validity of a credit card. Given
a number, the algorithm works as follows:

� Write the number as a sequence of decimal digits in the usual left-to-right order.
Starting at the right, double every second value. (That is, start by doubling the
next-to-last digit.)

� Add the digits of the resulting sequence.

� Compute the remainder when the above sum is divided by 10.

� The number is valid if the remainder is 0.

For example, here is how the algorithm checks the number 13573:

separate the digits 1 3 5 7 3
double every other one 1 6 5 14 3
add the digits 1 6 5 1 + 4 3
compute the total 1 + 6 + 5 + 5 + 3 =20

1

Therefore the number 13573 is valid because 20 is a multiple of 10. Usually, the last
(rightmost) digit of an account number is the check digit. It is chosen to make the
Luhn algorithm work out correctly. In the above example, 1357 is the �real� account
number and 3 is the check digit. 1

For this problem you will write implement a function that veri�es if a given number
satis�es the Luhn algorithm. We'll break this down into several functions as follows:

(a) Write a function toDigits :: Integer -> [Integer] that converts a positive
integer to a list of digits. If the given integer is less than 1, the function should
return an empty list.

(b) Write a function toDigitsRev :: Integer -> [Integer] that does the same
thing, but with the digits in reverse order.

(c) Write a function doubleEveryOther :: [Integer] -> [Integer] which dou-
bles every other number starting from the right. In other words, the last
digit is not doubled, but the second-to-last digit is doubled, the third-from-last
digit is not doubled, and so on.

(d) The output of doubleEveryOther is a list of integers between 0 and 18 (inclu-
sive). Write a function sumDigits :: [Integer] -> Integer that returns the
sum of all the digits (note that sumDigits [1, 14] should evaluate to 6).

(e) Finally, write a function validate :: Integer -> Bool which takes an integer
and returns True if it's a valid credit card number and False otherwise. This
function should use most (but possibly not all, depending on how you choose to
implement validate) of the previous functions.

2. [9 point(s)] Substitution Ciphers

Encryption takes plaintext, which is a human-readable message that is to be kept
secret, and turns it into ciphertext, which is the encoded version that is hopefully
inaccessible to anyone who does not know how to decrypt it. Often there is an
additional piece of information called the key that allows someone to decode the
ciphertext back into its human-readable plaintext form.

The Caesar cipher is one of the simplest forms of encryption. We choose a constant
shift distance k and replace each letter by its kth successor. The following show the
substitutions for a shift of 4.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

EFGHIJKLMNOPQRSTUVWXYZ ABCD

1Security warning: Be cautious with real credit card numbers and avoid typing them into �les. There

are websites like http://www.getcreditcardnumbers.com/ from which you can get �valid looking� numbers

for testing. Life warning: Do not try to buy anything with a card number from one of these sites.

2

http://www.getcreditcardnumbers.com/

In encrypting the plaintext, the letter A becomes E, B becomes F, and so on. When
we reach the end of the alphabet, we wrap around to the beginning. To keep things
simple, we use only uppercase letters plus the blank space, denoted . When we
encrypt the blank space, we hide the word structure of the message and make it
harder to decrypt. With a shift of size 4, SAGEHEN becomes WEKILIR, and MEET AT

MIDNIGHT becomes QIIXDEXDQMHRMKLX.

Caesar ciphers are easy to decipher because all you need to know is the translation of
one letter. That reveals the shift and all the letter translations are known. With our
alphabet, including the blank space, there are 27 di�erent shifts. One of them, the
zero shift, does not change the message at all and is useless for secrecy. Thus there
are 26 possible keys � much too small a number. An adversary could easily try all
26 possibilities and decrypt a message. We'll see something more sophisticated in the
next problem.

Naturally we'll implement encrypt (and decrypt). To do this you should implement
the following functions:

� sanitize :: [Char] -> [Char]: this function converts a list of characters to
a new list from which all characters other than blanks and letters have been
removed and in which all letters have been shifted to uppercase. For exam-
ple, sanitize �I recurse, therefore I am.� should evaluate to �I RECURSE

THEREFORE I AM�.

Note: this is a beautiful �t for map and filter!

� caesar :: Integer -> [Char] -> [Char]: this function takes an integer and
a string and encodes the string using the shift speci�ed by the integer. For
example, caesar 7 "I recurse, therefore I am." should evaluate to

"PGYLJAYZLG OLYLMVYLGPGHT".

Note: there are di�erent ways to write this functon. One possibility would be to
implement a helper function with a type signature Int -> Char -> Char that
shifts a single character by the given amount. Then you could use map to apply
this helper function to the entire message.

If the integer shift n is greater than 27 then caesar n should do the same thing
as caesar (n-27). If the integer shift n is less than 0 then caesar n should do
the same thing as caesar (n+27).

3

