
csci54 – discrete math & functional programming
higher order functions

"Haskell functions can take functions as
parameters and return functions as return
values. A function that does either of those is
called a higher order function. Higher order
functions aren’t just a part of the Haskell
experience, they pretty much are the Haskell
experience."

map and filter (from last time)
 map :: (a -> b) -> [a] -> [b]

 takes a function that maps elements of type a to type b
 applies the function to every element in a list of type a and returns a

list of the results (which have type b)

 filter :: (a -> Bool) -> [a] -> [a]
 takes a function that maps elements of type a to True/False (a

predicate)
 applies the function to every element in a list of type a and returns

only those elements for which the function returns True

ghci> map length ["ab", "aaaaa", "b"]
ghci> map (^3) [1,3,6]

ghci> headA x = (head x) == 'a'
ghci> filter headA ["ab", "aaaaa", "b"]

Curried functions
 Every function in Haskell only takes one parameter (!!)
 What does that mean?

ghci> mult x y z = x * y * z

ghci> mult x y z = x * y * z
ghci> let mult10 = mult 2 5 in map mult10 [1,2,3]

Practice
 Write a function multFirst :: [Integer] -> [Integer] which

returns a list containing the products of the first and n'th
elements of the input.
 For example: multFirst [2,3,4,5] = [6,8,10]

 Does your function use a higher-order function? If not, how
could you write it using a higher order function?

map and filter
 map :: (a -> b) -> [a] -> [b]

 takes a function that maps elements of type a to type b
 applies the function to every element in a list of type a and returns a

list of the results (which have type b)

 filter :: (a -> Bool) -> [a] -> [a]
 takes a function that maps elements of type a to True/False (a

predicate)
 applies the function to every element in a list of type a and returns

only those elements for which the function returns True

 how would you implement map? filter?

practice problem
 The mapish function takes a list of functions and a single

element x. It then returns a list of the results of applying each
function to x. Implement the mapish function.

 what is the type of the mapish function?

ghci> mapish [(+1), (*3)] 10
[11, 30]

What if you wanted to mapish:
f1(x) = x2 +1
f2(x) = 4x-10

lambdas (aka anonymous functions)
 functions that don't have names
 functions that you use once in the context of some other

function

 syntax:
 starts with \ (meant to resemble λ).
 -> separates parameters from what the function evaluates to

ghci> headA x = (head x) == 'a'
ghci> filter headA ["ab", "aaaaa", "b"]

ghci> filter (\y -> (head y) == 'a') ["ab", "aaaaa", "b"]

\a b -> (a * b + 10)

	csci54 – discrete math & functional programming higher order fu
	Slide 2
	map and filter (from last time)
	Curried functions
	Practice
	Slide 6
	map and filter
	practice problem
	Slide 9
	lambdas (aka anonymous functions)

