
csci54 – discrete math & functional programming
higher order functions

Last time
 reviewed types and talked about inferring the type of a

function

 Haskell constructs:
 pattern matching
 guards
 where
 let

 helper functions

import Data.Char

mystery'' :: [Char] -> [Char] -> String
mystery'' x y
 | secondHalf aL && secondHalf bL = "group 4"
 | secondHalf aL && not (secondHalf bL) = "group 3"
 | not (secondHalf aL) && secondHalf bL = "group 2"
 | otherwise = "group 1"
 where (a:_) = x
 (b:_) = y
 aL = toLower a
 bL = toLower b
 secondHalf c = if (c > 'm')
 then True
 else FalsesecondHalf c = (c > 'm')

pattern matching can
be used in many ways

Practice question
 Consider a function everyOther that takes a list and returns a

new list consisting of every other element in the original list
starting with the first element. As an example, everyOther
[1,5,2,4,-1] should return [1,2,-1]

 What is the type of everyOther?

 How would you implement everyOther using pattern
matching?

Some history

Haskell B.
Curry

Combinatory Logic - Professor Haskell
Brooks Curry (1900-82) was a pioneer
of modern mathematical logic. His
research in the foundations of
mathematics led him to the
development of combinatory logic.
Later, this influential work found
significant application in computer
science, especially in the design of
programming languages.

Some very useful built-in Haskell functions
 map and filter

 examples

 what is the type of the map function?

ghci> isEven x = (x `mod` 2 == 0)
ghci> map isEven [1..10]
ghci> filter isEven [1..10]

ghci> map head ["abc", "def", "AAA"]
ghci> let l x = (length x > 3) in filter l ["apple", "pen", "banana", "x"]

Higher-order functions

 What's the type of the map function?
map :: (a -> b) -> [a] -> [b]

 What's the type of the filter function?
 filter :: (a -> Bool) -> [a] -> [a]

"Haskell functions can take functions as
parameters and return functions as return
values. A function that does either of those is
called a higher order function. Higher order
functions aren’t just a part of the Haskell
experience, they pretty much are the Haskell
experience."

Exploring higher-order functions
 Are these type signatures different? Could they all describe

the same function?

 consider the following function

 what is the type of isDiv?
 what if you wanted to use isDiv with filter, say to select elements

divisible by 7?

f1 :: (a -> a) -> a
f2 :: a -> (a -> a)
f3 :: a -> a -> a

ghci> isDiv x y = y `mod` x == 0

Exploring higher-order functions
 consider:

 what is the type of isDiv?

 what is the type of (isDiv 7)?

ghci> isDiv x y = y `mod` x == 0
ghci> head (filter (isDiv 7) [1000,999,..1])

isDiv :: Integral a => a -> a -> Bool

(isDiv 7) :: Integral a => a -> Bool

Curried functions
 Every function in Haskell only takes one parameter (!!)
 What does that mean?

ghci> mult x y z = x * y * z

ghci> mult x y z = x * y * z
ghci> let mult10 = mult 2 5 in map mult10 [1,2,3]

"Haskell functions can take functions as
parameters and return functions as return
values. A function that does either of those is
called a higher order function. Higher order
functions aren’t just a part of the Haskell
experience, they pretty much are the Haskell
experience."

Practice
 Write a function multFirst :: [Integer] -> [Integer] which

returns a list containing the products of the first and n'th
elements of the input.
 For example: multFirst [2,3,4,5] = [6,8,10]

 Does your function use a higher-order function? If not, how
could you write it using a higher order function?

	csci54 – discrete math & functional programming higher order fu
	Last time
	Practice question
	Slide 4
	Some history
	Some very useful built-in Haskell functions
	Higher-order functions
	Exploring higher-order functions
	Exploring higher-order functions (2)
	Slide 10
	Curried functions
	Slide 12
	Practice

