
csci54 – discrete math & functional programming
pattern matching, guards, where bindings

this week
 week03-group

 please select pages for each question

 week03-ps-coding

 reminders
 assignment regrades
 missing lectures

Last time - types
 specifying the type of a function:

name :: (typeClass var1, typeClass var1, typeClass var2, ...) =>
 var1 -> var2 -> returnVal

Practice
 What are the types of the following functions?

 Discussion:
 use of wildcard character _
 what does (x:y:z:w:l) match to?
 Are both these definitions exhaustive?

 What do the functions do?

f1 'a' _ = []
f1 x y = x:y

f2 (x:y:z:w:l) = w
f2 _ = 0

Last time – pattern matching
 pattern matching:

maxList :: [Integer] -> Integer
maxList [] = error "empty list"
maxList [x] = x
maxList (x:xs) = max x (maxList xs)

More pattern matching
 You can pattern match against multiple lists!

 Consider this function:

equal :: (Eq a) => [a] -> [a] -> Bool
equal [] [] = True
equal _ [] = False
equal [] _ = False
equal (x:xs) (y:ys) =

if x == y
then equal xs ys
else False

Pattern matching
 What breaks if you don't include (only) the 2nd pattern?

 *** Exception: Non-exhaustive patterns in function equal'
 What breaks if you don't include (only) the 1st pattern?

 will always return False

equal' :: (Eq a) => [a] -> [a] -> Bool
equal' [] [] = True
equal' _ [] = False
equal' [] _ = False
equal' (x:xs) (y:ys) =

if x == y
then equal' xs ys
else False

One more practice question
 Consider a function everyOther that takes a list and returns a

new list consisting of every other element in the original list
starting with the first element. As an example, everyOther
[1,5,2,4,-1] should return [1,2,-1]

 What is the type of everyOther?

 How would you implement everyOther using pattern
matching?

case
 We can also pattern-match within the body of a function:

 This can be useful if you need to e.g. make a choice based on
the return value of your recursive case

last' xs =
 case xs of
 [] -> error “empty list”
 [x] -> x
 x:xs -> last' xs

Guards
 pattern-matching lets you specify cases based on values
 guards let you specify cases based on expressions

 can combine the two
equal :: (Eq a) => [a] -> [a] -> Bool
equal [] [] = True
equal _ [] = False
equal [] _ = False
equal (x:xs) (y:ys) =

if x == y
then equal xs ys
else False

equal' :: (Eq a) => [a] -> [a] -> Bool
equal' [] [] = True
equal' _ [] = False
equal' [] _ = False
equal' (x:xs) (y:ys)

| x == y = equal' xs ys
| otherwise = False

Where bindings
 Gives you the ability to name intermediate values

 Scope: where bindings are
visible to entire function

equal' :: (Eq a) => [a] -> [a] -> Bool
equal' [] [] = True
equal' _ [] = False
equal' [] _ = False
equal' (x:xs) (y:ys)

| x == y = equal' xs ys
| otherwise = False

equal' :: (Eq a) => [a] -> [a] -> Bool
equal' [] [] = True
equal' _ [] = False
equal' [] _ = False
equal' (x:xs) (y:ys)

| x == y = rest
| otherwise = False

 where rest = equal' xs ys

Let bindings
 Similar to where

 scope is more localized
 does not bind across guards

 are expressions themselves
 syntax is "let <bindings> in <expression>

ghci> 4 * (let a = 9 in a + 1) + 2

Practice
 What does the following function do?

 Code is a little repetitive---how could it be simplified?

import Data.Char

mystery x y
 | aL > 'm' && bL > 'm' = "group 4"
 | aL > 'm' && bL <= 'm' = "group 3"
 | aL <= 'm' && bL > 'm' = "group 2"
 | otherwise = "group 1"
 where (a:_) = x
 (b:_) = y
 aL = toLower a
 bL = toLower b

importing a module in Haskell
this one gives us functions including toLower

 Bonus section if we’re doing OK on time

Fallible Functions
 We see in functions like maxInt that some cases crash the program
 These “partial functions” can be tricky to work with
 What could we do in Python or Java to take the “maximum” of an empty

list?

 …

Maybe type
 Let’s introduce a new type:

 Maybe (aka Option) is common nowadays in C++, Java, TypeScript,
Rust, & others

 We encode “either something or null” into the type, rather than as a
language feature like undefined or None

 Then we can just write regular functions on it:

data Maybe a =
 Nothing
 | Just a
 deriving (Show, Eq)

orElse :: Maybe a -> a -> a
orElse (Just a) _ = a
orElse Nothing b = b

Maybe

 What’s the issue with the code below?
 maxInt :: [Integer] -> Maybe Integer
 maxInt [] = Nothing
 maxInt [x] = Just x
 maxInt (x:xs) = max x (maxInt xs)

data Maybe a =
 Nothing
 | Just a
 deriving (Show, Eq)

Maybe

 Will this do the trick?
 maxInt :: [Integer] -> Maybe Integer
 maxInt [] = Nothing
 maxInt [x] = Just x
 maxInt (x:xs) = max x (maxInt xs)

 maxInt (x:xs) = max x ((maxInt xs) `orElse` x)

data Maybe a =
 Nothing
 | Just a
 deriving (Show, Eq)

← a Maybe
Integer, not
an Integer!

Maybe

 maxInt :: [Integer] -> Maybe Integer
 maxInt [] = Nothing
 maxInt [x] = Just x
 maxInt (x:xs) = max x ((maxInt xs) `orElse` x))

 maxInt (x:xs) = Just (max x ((maxInt xs) `orElse` x))

data Maybe a =
 Nothing
 | Just a
 deriving (Show, Eq)

^^^ an Integer, not an Option Integer!

Maybe
 maxInt :: [Integer] -> Maybe Integer
 maxInt [] = Nothing
 maxInt [x] = Just x
 maxInt (x:xs) = Just (max x ((maxInt xs) `orElse` x))
 Does this look too complicated?
 There are ways to make it simpler---e.g. using map or fold which we’ll see next

week: map (max x) (maxInt xs)
 Equivalent Python code is actually longer, especially the recursive version

 AND it’s more error-prone

 In Haskell, if we say we have an Integer, then we definitely have an
Integer---not null, not ever.

Fallible Functions
 Error handling is a big topic.
 Not something-or-nothing; good-thing-or-bad-thing
 Haskell has Either (Left a | Right b), which you can use to return more

informative errors (e.g., a file-reading function might return Either
String FileReadError)

 Our pattern matching abilities make dealing with optional values
straightforward (if verbose)

 Higher-order functions, which we’ll see next week, are even more
powerful and concise

	csci54 – discrete math & functional programming pattern matchin
	this week
	Last time - types
	Practice
	Last time – pattern matching
	More pattern matching
	Pattern matching
	One more practice question
	Slide 9
	case
	Guards
	Where bindings
	Let bindings
	Practice (2)
	Slide 15
	Fallible Functions
	Maybe type
	Maybe
	Maybe (2)
	Maybe (3)
	Maybe (4)
	Fallible Functions (2)

