
csci54 – discrete math & functional programming
types and pattern matching

this week

 week02-group
 work on during small group meeting this week tomorrow and the day

after
 due 10pm on Thursday

 week02-ps
 due 10pm on Sunday

Last time
 Write a function oddList' where oddList' evaluates to a list of

odd integers from 1 up to, but possibly not including, n. If n <
1 the function should return an empty list

oddList' n =
 if n <= 0
 then []
 else if (n `mod` 2) == 1
 then oddList' (n-1) ++ [n]
 else oddList' (n-1)

Types
 If turning in for assignment, would be expected to include a

line above it, which might read as follows.

 Terms: types, type variables, type classes

oddList' :: Integer -> [Integer]
oddList' n =
 if n <= 0
 then []
 else if (n `mod` 2) == 1
 then oddList' (n-1) ++ [n]
 else oddList' (n-1)

Types
 The Haskell type system is fantastic

 It infers as much as possible and won't let you execute code that
doesn't type-check.

 This can make it very, very frustrating

 common Haskell types
 Int, Integer
 Float, Rational, Double
 Bool
 Char, String

 what about functions?

ghci> :t 'a'
ghci> :t "A"
ghci> :t 4==5

ghci> check x = (x == True)
ghci> :t check

Types – for functions

 what if a function takes multiple parameters?

ghci> check x = (x == True)
ghci> :t check
check :: Bool -> Bool

oddList' :: Integer -> [Integer]

ghci> :t head
pow :: Integer -> Integer -> Integer

pow n k =
 if k == 0
 then 1
 else n * (pow2 n (k-1))

Type variables
 In some cases you have a function that could take any type

 declare the type with a type variable

 What if you have a function that could take some types, but
not all types?

ghci> :t head
head :: [a] -> a

Type classes
 A type class is an interface that defines some behavior
 A type that is an instance of a given type class must support

that behavior

 Common type classes
 Num, Floating, Integral

 fromIntegral function for converting Integral to more general Num
 Eq, Ord
 Enum
 Show, Read

ghci> :t 2

oddList :: Integral a => a -> [a]

Putting it all together
 Basic format:

 What are the types of these functions?
 That is, what would Haskell infer the types were if we didn't specify

explicitly?

addTriplet (x, y, z) = x + y + z
addTriplet' x y z = x + y + z

a function pythagoras that takes a tuple of integers (a, b, c) and
 returns True if and only if a2 + b2 = c2

name :: (typeClass typeVar, typeClass typeVar, ...) =>

 var1 -> var2 -> returnVal

Functions and Pattern matching
 Write a function pow that takes two parameters n and k and

returns n to the kth power. (assume that k is guaranteed to be
a non-negative integer)

 Could also be written as follows

pow :: Integer -> Integer -> Integer
pow n k =
 if k == 0
 then 1
 else n * (pow n (k-1))

pow :: Integer -> Integer -> Integer
pow _ 0 = 1
pow n k = n * (pow n (k-1))

Pattern matching
 Idea is to specify patterns for data to match. If matches, then

deconstruct the data according to the pattern

 You can pattern match on any data type: numbers, characters,
lists, tuples, etc.

 When defining functions, you can define separate function
bodies for different patterns.

 checks the patterns from top to bottom

isSeven :: (Integral a) => a -> String
isSeven 7 = "You're right!"
isSeven x = "Sorry!"

Pattern matching with lists
 Write a function that takes a list of integers and returns the

largest integer in that list:

 [x] matches list with exactly one element
 (x:xs) matches list with at least one element (x matches the first

element and xs matches the rest of the list)

 What happens if you give maxInt an empty list?

maxInt :: [Integer] -> Integer
maxInt [x] = x
maxInt (x:xs) = max x (maxInt xs)

*** Exception: week02-lec03-code.hs:(19,1)-(20,33):
Non-exhaustive patterns in function maxInt

Pattern matching with lists
 Write a function that takes a list of integers and returns the

largest integer in that list:

 [] matches empty list
 [x] matches list with exactly one element
 (x:xs) matches list with at least one element (x matches the first

element and xs matches the rest of the list)

 Does it still work if you don't include the 2nd pattern?
 Does it still work if you reverse the order of the 3 patterns?

maxInt :: [Integer] -> Integer
maxInt [] = error "empty list"
maxInt [x] = x
maxInt (x:xs) = max x (maxInt xs)

Practice problems
 Use pattern matching to write a function last' that returns the

last element of a list (give an error if the list is empty)

 Use pattern matching to write a function nextToLast that
returns the second-to-last element of a list

	csci54 – discrete math & functional programming types and patte
	this week
	Last time
	Types
	Types (2)
	Types – for functions
	Type variables
	Type classes
	Putting it all together
	Functions and Pattern matching
	Pattern matching
	Pattern matching with lists
	Pattern matching with lists (2)
	Practice problems

