
csci54 – discrete math & functional programming
types and pattern matching

this week

 week02-group
 work on during small group meeting this week tomorrow and the day

after
 due 10pm on Friday

 week02-ps
 due 10pm on Sunday (10pm Monday if using 24 hour extension)

Last time – lists, tuples, list comprehensions
 What do these evaluate to?

[if x*y > 3 then [1] else [2] | x <- [1..3], y <- [1..3]]
[(x,y,z) | x <- [1..3], y <- [1..3], z <- [1..3], x < y, y < z]

[(x,y,z) | z <- [1..3], y <- [1..3], x <- [1..3], x < y, y < z]

Last time
 Write a function oddList' where oddList' evaluates to a list of

odd integers from 1 up to, but possibly not including, n. If n <
1 the function should return an empty list

 Write oddList' using a list comprehension

oddList' n =
 if n <= 0
 then []
 else if (n `mod` 2) == 1
 then oddList' (n-1) ++ [n]
 else oddList' (n-1)

oddList'LC n =
 [x | x <- [1..n], x `mod` 2 == 1]

Types
 If turning in for assignment, would be expected to include a

line above it, which might read as follows.

 Terms: types, type variables, type classes

oddList' :: Integer -> [Integer]
oddList' n =
 if n <= 0
 then []
 else if (n `mod` 2) == 1
 then oddList' (n-1) ++ [n]
 else oddList' (n-1)

Types
 The Haskell type system is fantastic

 It infers as much as possible and won't let you execute code that
doesn't type-check.

 This can make it very, very frustrating
 common Haskell types

 Int, Integer
 Float, Rational, Double
 Bool
 Char, String

 what about functions?

ghci> :t 'a'
ghci> :t "A"
ghci> :t 4==5

ghci> check x = (x == True)
ghci> :t check

Types – for functions

 what if a function takes multiple parameters?

ghci> check x = (x == True)
ghci> :t check
check :: Bool -> Bool

oddList' :: Integer -> [Integer]

ghci> :t head
pow :: Integer -> Integer -> Integer

pow n k =
 if k == 0
 then 1
 else n * (pow2 n (k-1))

Type variables
 In some cases you have a function that could take any type

 declare the type with a type variable

 What if you have a function that could take some types, but
not all types?

ghci> :t head
head :: [a] -> a

oddList'LC n = [x | x <- [1..n], x `mod` 2 == 1]

Type classes
 A type class is an interface that defines some behavior
 A type that is an instance of a given type class must support

that behavior

 Common type classes
 Num, Floating, Integral

 fromIntegral function for converting Integral to more general Num
 Eq, Ord
 Enum
 Show, Read

ghci> :t 2
ghci> :t [x*y | x <- [1..3], y <- [1..3], x > y]

oddList'LC :: Integral a => a -> [a]

Putting it all together
 Basic format:

 What are the types of these function?
 That is, what would Haskell infer the types were if we didn't specify

explicitly?
addTriplet (x, y, z) = x + y + z
addTriplet' x y z = x + y + z
weird a b = [if x*y > 3 then [a] else [b] | x <- [1..3], y <- [1..3]]

a function pythagoras that takes a tuple of integers (a, b, c) and
 returns True if and only if a2 + b2 = c2

name :: (typeClass typeVar, typeClass typeVar, ...) =>

 var1 -> var2 -> returnVal

Functions and Pattern matching
 Write a function pow that takes two parameters n and k and

returns n to the kth power. (assume that k is guaranteed to be
a non-negative integer)

 Could also be written as follows

pow :: Integer -> Integer -> Integer
pow n k =
 if k == 0
 then 1
 else n * (pow n (k-1))

pow :: Integer -> Integer -> Integer
pow _ 0 = 1
pow n k = n * (pow n (k-1))

Pattern matching
 Idea is to specify patterns for data to match. If matches, then

deconstruct the data according to the pattern

 You can pattern match on any data type: numbers, characters,
lists, tuples, etc.

 When defining functions, you can define separate function
bodies for different patterns.

 checks the patterns from top to bottom

isSeven :: (Integral a) => a -> String
isSeven 7 = "You're right!"
isSeven x = "Sorry!"

Pattern matching with lists
 Write a function that takes a list of integers and returns the

largest integer in that list:

 [x] matches list with exactly one element
 (x:xs) matches list with at least one element (x matches the first

element and xs matches the rest of the list)
 What happens if you give maxInt an empty list?

maxInt :: [Integer] -> Integer
maxInt [x] = x
maxInt (x:xs) = max x (maxInt xs)

*** Exception: week02-lec03-code.hs:(19,1)-(20,33):
Non-exhaustive patterns in function maxInt

Pattern matching with lists
 Write a function that takes a list of integers and returns the

largest integer in that list:

 [] matches empty list
 [x] matches list with exactly one element
 (x:xs) matches list with at least one element (x matches the first

element and xs matches the rest of the list)
 Does it still work if you don't include the 2nd pattern?
 Does it still work if you reverse the order of the 3 patterns?

maxInt :: [Integer] -> Integer
maxInt [] = error "empty list"
maxInt [x] = x
maxInt (x:xs) = max x (maxInt xs)

Practice problems
 Use pattern matching to write a function last' that returns the

last element of a list (give an error if the list is empty)

 Use pattern matching to write a function nextToLast that
returns the second-to-last element of a list

	csci54 – discrete math & functional programming types and patte
	this week
	Last time – lists, tuples, list comprehensions
	Last time
	Types
	Types (2)
	Types – for functions
	Type variables
	Type classes
	Putting it all together
	Functions and Pattern matching
	Pattern matching
	Pattern matching with lists
	Pattern matching with lists (2)
	Practice problems

