cscidb4 — discrete math & functional programming
types and pattern matching

this week

> week02-group

work on during small group meeting this week tomorrow and the day
after

due 10pm on Thursday

> week02-ps
due 10pm on Sunday

Last time

> Write a function oddList' where oddList' evaluates to a list of
odd integers from 1 up to, but possibly not including, n. If n <
1 the function should return an empty list

oddList' n =
if n <=0
then []
else if (n mod 2) ==
then oddList' (n-1) ++ [n]
else oddList' (n-1)

Types

> If turning in for assignment, would be expected to include a
line above it, which might read as follows.

oddList' :: Integer -> [Integer]
oddList' n =
if n <=0
then []
else if (n mod 2) ==
then oddList' (n-1) ++ [n]
else oddList' (n-1)

> Terms: types, type variables, type classes

Types

> The Haskell type system is fantastic

It infers as much as possible and won't let you execute code that
doesn't type-check.

This can make it very, very frustrating

> common Haskell types ghci> :t 'a’
Int, Integer ghci> :t "A"
Float, Rational, Double ghci> :t 4==5
Bool
Char, String
> what about functions? ghci> check x = (x == True)

ghci> :t check

Types — for functions

ghci> check x = (x == True)
ghci> :t check

check :: Bool -> Bool

oddList' :: Integer -> [Integer]

> what if a function takes multiple parameters?

pow n K =
if k ==
then 1
else n * (pow2 n (k-1))

pow :: Integer -> Integer -> Integer

ghci> :t head

Type variables

> In some cases you have a function that could take any type
declare the type with a type variable

ghci> :t head
head :: [a] -> a

> What if you have a function that could take some types, but
not all types?

Type classes

> A type class is an interface that defines some behavior

> A type that is an instance of a given type class must support
that behavior
oddList :: Integral a => a -> [a]

> Common type classes

Num, Floating, Integral
fromlntegral function for converting Integral to more general Num

Eqg, Ord

Enum ghCl> t 2

Show, Read

Putting it all together
> Basic format:

name :: (typeClass typeVar, typeClass typeVar, ...) =>

varl -> var2 -> returnVal

> What are the types of these functions?

That is, what would Haskell infer the types were if we didn't specify
explicitly?

addTriplet (x, vy, z) =X +y + Z
addTriplet' xy z =X +y + z

a function pythagoras that takes a tuple of integers (a, b, ¢) and
returns True if and only if a2 + b? = ¢?

Functions and Pattern matching

> Write a function pow that takes two parameters n and k and
returns n to the kth power. (assume that k is guaranteed to be
a nhon-negative integer)

pow :: Integer -> Integer -> Integer
pow n Kk =

1f k ==

then 1

else n * (pow n (k-1))

> Could also be written as follows

pow :: Integer -> Integer -> Integer
pow O 1

pow nk=n* (pow n (k-1))

Pattern matching

> ldea Is to specify patterns for data to match. If matches, then
deconstruct the data according to the pattern

> You can pattern match on any data type: numbers, characters,
lists, tuples, etc.

> When defining functions, you can define separate function
bodies for different patterns.

isSeven :: (Integral a) => a -> String
isSeven 7 = "You're right!"
isSeven x = "Sorry!"

checks the patterns from top to bottom

Pattern matching with lists

> Write a function that takes a list of integers and returns the
largest integer in that list:

maxInt :: [Integer] -> Integer
maxInt [X] = X
maxInt (X:xs) = max x (maxInt xs)

[X] matches list with exactly one element

(x:xs) matches list with at least one element (x matches the first
element and xs matches the rest of the list)

What happens if you give maxInt an empty list?

*** Exception: week02-lec03-code.hs:(19,1)-(20,33):
Non-exhaustive patterns in function maxInt

Pattern matching with lists

> Write a function that takes a list of integers and returns the
largest integer in that list:

maxInt :: [Integer] -> Integer

maxInt [] = error "empty list"”

maxInt [x] = X

maxInt (x:xs) = max x (maxInt xs)

[] matches empty list
[X] matches list with exactly one element

(x:xs) matches list with at least one element (x matches the first
element and xs matches the rest of the list)

Does it still work if you don't include the 2" pattern?
Does it still work if you reverse the order of the 3 patterns?

Practice problems

> Use pattern matching to write a function last' that returns the
last element of a list (give an error if the list is empty)

> Use pattern matching to write a function nextToLast that
returns the second-to-last element of a list

	csci54 – discrete math & functional programming types and patte
	this week
	Last time
	Types
	Types (2)
	Types – for functions
	Type variables
	Type classes
	Putting it all together
	Functions and Pattern matching
	Pattern matching
	Pattern matching with lists
	Pattern matching with lists (2)
	Practice problems

