
Discrete Math & Functional Programming� CSCI 054� Spring 2025
Instructor: Osborn

Homework - Week 01 (6 point(s))

Due: 11:59PM on Sunday

� This assignment must be turned in individually on Gradescope. However for this
assignment only you may collaborate as much as you want with the other students

in your small group.

� If you ever have any questions about what is an acceptable amount of
collaboration (or an acceptable use of ChatGPT or similar programs!),
you must discuss with the professor in advance!!!

1. [6 point(s)] reading and submitting code

Everyone should turn in this problem on Gradescope individually, although for this
assignment only you may work as much as you want with the other students in your

group. In fact, your group is highly encouraged to work on the problem together.

For this week's group assignment you downloaded the template �le and saved it on

your computer. Now open this �le in your preferred editor (most likely emacs or

VSCode). This is the �le where you will put your solutions and then submit to

Gradescope.

The solution for the �rst two questions is given in the template; please take the time

to look at the code and to get a general sense of how it works. Additionally we have

put in comments describing each of the functions that you are expected to write. In

the future you will be expected to include your own comments before the start of each

function.

(a) Write a function numList with the property that numList n is a list of integers

from n down to 1.

Solution:

numList :: Integer -> [Integer]

numList n =

if n <= 0

then []

else

n : (numList (n-1))

1

(b) Write a function sumFormula with the property that sumList n is the sum of

the integers from n down to 1, but uses the mathematical formula

n+ (n− 1) + (n− 2) + ...+ 1 =
n(n+ 1)

2

Solution:

sumFormula :: Integer -> Integer

sumFormula n = round ((fromIntegral n) * (fromIntegral (n+1)) / 2.0)

(Thought question: What happens if you just have sumFormula n = n * (n+1)

/ 2? Why do you think that is?)

(c) Write a recursive function sumList with the property that sumList n is the

sum of the integers from n down to 1. sumList should have the type signature

Integer -> Integer. If n is less than 1 the function should return 0.

(d) Write a function sumCheck that takes an Integer n and returns True if sumFormula

n and sumList n return the same value. sumCheck should have the type signa-

ture Integer -> Bool

Look for the assignment week01-ps-coding on Gradescope and upload the Haskell

�le that contains your solutions. There is an autograder on Gradescope which will run

a single test case for each function. This will ensure that all your types are correct.

Note that when we actually grade your assignment we will run many more tests, so

you should make sure to test your code thoroughly!

2

