
CS051A
INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI

9: Reading files

Alexandra Papoutsaki

she/her/hers

Lectures

02-15-2023

Zilong Ye

he/him/his

Labs

Welcome to lecture 9, where we take working with data to a new level.	

TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Reading files

▸ Files

▸ Strings

▸ More Files

2

Our main focus today will be files, but we will also encounter strings again.

FILES

What is a file?

3

▸ A chunk of data stored on the hard disk/drive.

▸ Data stored in the hard drive persist even if we turn off
our computer.

▸ When a program is running, all the data is generating
and processing is moved by the CPU into the main
memory, e.g., RAM.

▸ The main memory is faster, but doesn't persist when
the power goes off.

https://businesscloud.ca/wp-content/uploads/2016/03/hard-drive-vs-ram.jpg

What do I mean by files? A file is a chunk of data stored in the hard drive/disk. Data stored in the hard drive persist even if we turn off our computer. That’s why when we
save our pictures, homework, etc, we can be sure that when we turn our computer back on we don’t lose our work. When a program is running, all the data it needs to
process or that it generates, are moved by the CPU (the brain of our computer) into the main memory. You might have heard of RAM or random access memory, a type of
main memory. The main memory is much faster than hard drives (and more expensive!) But it doesn’t persist when the power goes off.

FILES

Opening files

4

▸ To read a file in Python, we first need to open it.

▸ If we just want to hard-code the name and the name of the file is "some_file_name" then:

▸ file = open("some_file_name", "r")

▸ or if the name of the file is in a variable, then:

▸ name_of_file = “some_file_name"

▸ file = open(name_of_file, “r")

▸ open is a function that takes two parameters, both strings:

▸ the first parameter is a string that identifies the name of the file.

▸ Python assumes that the file is in the same directory as your .py program, unless you tell it to look elsewhere.

▸ the second parameter is another string telling Python what you want to do with the file:

▸ r stands for "read", that is, we're going to read some data from the file.

▸ open returns a file object that we can use later on for reading purposes

▸ above, we've saved that in a variable called file, but I could have called it anything else.

Let’s see how we would read files in Python. To accomplish that, we first need to learn how we are to open them for reading. There is a function called open that takes
two parameters, the name of the file (or a variable storing it) we want to read, a mode of how you want to open the file. For example, open(name_of_file, “r”), will open the
file whose name is stored in the name_of_file variable. The “r” mode indicates that we open the file to read it. Please keep in mind that the file is expected to be stored in
the same directory with our .py python file.

FILES

Reading a file line by line

5

▸ Look at function line_count in file-basics.py

▸ This is a common pattern for reading from files:

▸ 1. Open the file

▸ file = open(filename, "r")

▸ 2. Iterate through the file a line at a time

for line in file:

…

▸ What you want to do as you read the file is the …

▸ 3. Close the file

▸ file.close()

▸ In this case, we're just incrementing the counter, line_count, each time through the loop. The result
is a count of the number of lines in the file.

Let’s look at the function line_count in file-basics.py. We will soon identify a common pattern for reading from files. We open them, and then we have a for loop that goes
through each of the lines in the opened file and does something. We should also make sure that we close the file when we are done with reading it. In this function, we
keep a counter for how many lines it has.

FILES

Printing the contents of a file line by line

6

▸ Look at function print_file_almost in file-basics.py

▸ Again, very similar structure but we print lines of file.

▸ Anything funny about this?

▸ There are extra blank lines between the output!

The print_file_almost attempts to print the contents of the file. When we call this function, we notice something funny: there are extra blank lines between the output.

FILES

Debugging print_file_almost

7

▸ To try and understand this, let's add some debugging statements,
specifically, print(len(line)) in the for loop and run again:

▸ If you count the characters, there's one extra!

Why does this happen? Let’s try to debug our function by adding a print statement that shows the length of line. When we count the characters, we notice that there’s an
extra one!

FILES

Printing the contents of a file line by line - correct version

8

▸ Look at function print_file in file-basics.py

▸ The problem before was that when we read a
line, we also read the end of line character.

▸ What's really in the basic.txt file is:

▸ This is a file\nIt has some text in it\nIt's not
very EXCITING

▸ We use the strip() method.

▸ Returns a copy of the string without leading
and trailing whitespaces.

That extra character is a special, end of line, character. The proper way of going about it is to use the strip() method which returns a copy of the string after it has
removed any leading and trailing whitespaces as can be seen in file-basics.py.

TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Reading files

▸ Files

▸ Strings

▸ More Files

9

It’s intermission time. Let’s make a pause to revisit strings.

STRINGS

Splitting a string into a list of substrings

10

▸ string.split(sep)

▸ Returns a list of the
substrings in the string,
using sep as the
delimiter string.

▸ If no delimiter is
provided, string is split
according to any
whitespace character
(spaces, tabs, end of line
characters).

Specifically, let’s see two useful methods. The first one is called split and it optionally takes as a parameter a string that acts as a delimiter. What we get back is a list of
the substrings in the original string split by the delimiter. If we don’t provide one, the default is any whitespace character (space, tab, EOL).

STRINGS

Checking whether a string is an uppercase string

11

▸ string.isupper()

▸ Returns True if the string is an uppercase string, False
otherwise.

The second method is supper and returns True if the string has all characters in uppercase and false otherwise.

TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Reading files

▸ Files

▸ Strings

▸ More Files

12

OK, we covered everything we needed about strings. Let’s get back to files.

MORE FILES

Counting number of words in a file

13

▸ Look at function file_word_count
in file-basics.py

▸ Again, very similar structure but
we count number of words by
splitting each line we read using
the split method.

▸ Instead of adding 1 to the
counter each time through the
loop, we add len(words).

We will continue going over the functions in file-basics.py. If we look at the function file_word_count, we will notice that it has a similar structure and that it now uses the
split method we just learned about. What it does, is that it counts the number of words in the file.

MORE FILES

Counting number of capitalized words in a list

14

▸ Look at function capitalized_word_count in file-
basics.py

▸ Given a list of words, it iterates, one word at a time, and
checks if the word is capitalized using the isupper
method of the first character.

▸ If so, increments the count.

The function capitalized_word_count receives a list of words, goes over them, and counts how many of them are capitalized using the is uppercase method.

MORE FILES

Counting number of capitalized words in a file

15

▸ Look at function
file_capitalized_count
in file-basics.py

▸ Given a file, it checks each
of its lines and counts how
many capitalized words
exist in total.

We can use this function to build a method, file_capitalized_count that will count all capitalized words in a file.

MORE FILES

word-stats.py

16

▸ Look at file_stats function

▸ It iterates over each item in the file and keeps track of:

▸ longest string found,

▸ shortest string found,

▸ total length of the strings iterated over, and

▸ the total number of strings/items.

▸ How does it keep track of the longest?

▸ It starts with the empty string (“”), compares every word to the longest so far.

▸ If longer, updates longest.

▸ What does if shortest == "" or len(word) < len(shortest) do? Why don't we have it for the longest condition?

▸ For longest, we started with the shortest possible string, so any string will be longer.

▸ Hard to start with the longest possible string :)

▸ Instead we add a special case for the first time through the loop.

▸ We could have initialized shortest to be a really long string, but this is a more robust solution

Now let’s look at the word-stats file and specifically its file_stats function which keeps track of the longest and shortest string, the total length of the strings iterated over,
and the total number of strings. How does it keep track of the longest string? We start with an empty string and compare every word to the longest so far; if longer, we
update it. In contrast, for the shortest, we would not know what the longest possible string would be. That’s why we will start with an empty string and we will use an or
operation for all other instances.

MORE FILES

Practice time

17

▸ Write a function called read_numbers that takes a file of numbers (one
per line) and generates a list consisting of the numbers in that file.

▸ Don’t forget to use the int function to turn strings into numbers.

Let’s practice by writing a function called read_numbers that takes a file of numbers (one per line) and generates a list consisting of the numbers in that file. Don’t forget
to use the int function to turn strings into numbers.

MORE FILES

What if we want to find the most frequent value in the data?

18

▸ Assume you have read a file of numbers and you got this list:

▸ [1, 2, 3, 2, 3, 2, 1, 1, 5, 4, 4, 5]

▸ How would you do it on paper? How did you do it?

▸ Kept a tally of the number.

▸ Each time you saw a new number, added it to your list with a count of 1.

▸ If it was something you'd seen already, increase tally by 1.

▸ Key idea: keeping track of two things:

▸ a key, which is the thing you're looking up, and

▸ a value, which is associated with each key.

What if I gave you a file that you read using your read_numbers function and you got back [1, 2, 3, 2, 3, 2, 1, 1, 5, 4, 4, 5]. How would you find the most frequent value in
the data? Go on, do it on paper! I assume you kept a tally of the number. If you see it for the first time, you write down 1. If you have encountered it before you increase
the counter for that number by 1. This key idea of keeping track of two things can be captured in a pair of key and values. Keys are things we want to look up and values
are associated with them. On Monday, we will continue with looking at a new data structure, dictionaries, that will store such pairs!

ASSIGNED READINGS AND PRACTICE PROBLEMS

Resources

▸ Textbook: Chapter 11 (up to 11.4)

▸ file-basics.py

▸ basic.txt

▸ word-stats.txt

▸ numbers.txt

19

Homework
▸ Assignment 4 (ongoing)

https://runestone.academy/ns/books/published/thinkcspy/Files/toctree.html
https://cs.pomona.edu/classes/cs51a/examples/Lecture9/file-basics.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture9/basic.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture9/word-stats.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture9/numbers.txt

