CS051A

INTRO TO COMPUTER SCIENCE WITH TOPICS IN Al

6: Sequences

#~ T\ Alexandra Papoutsaki -, lilong Ye
& @ she/her/hers .. 2*:":‘ " he/him/his

TODAY'S LECTURE IN A NUTSHELL

Lecture 6: Sequences

» Lists
» Sequences

» Tuples

LISTS

scores-list.py

» A program that contains a set of functions for reading in
scores and calculating various statistics on them.

scores-list.py
A set of functions for reading in scores and calculating

various statistics from the input scores.

def get_scores():
Reads user input of numerical scores as floats into a list
and returns the list

:return: None

mmnn

LISTS

scores-lList.py main - What does it do?

v

First, it prompts the user to enter a list of scores one at a time
» Uses a while loop that keeps asking the user for a new score. What is the exit condition?
» Checks to see if the line is empty: while line != ""
» Then, calculate various statistics based on what was entered. How are we calculating these statistics?
» Average?
» We could keep track of the sum and the total number of scores entered and divide them at the end.

» Max (min)?

» Keep track of the largest (smallest) score seen so far. Each time a new one is entered, see if it's larger (smaller). If so, update the
largest (smallest).

» Median?

» The challenge with median is that we can't calculate it until we have all of the scores. We need to sort them and then find the
middle score.

» Why can't we do this using int/float variables?

» We don't know how many scores are going to be entered. Even if we did, if we had 100 students in the class, we'd need 100
variables!

LISTS

Lists
» List: a data structure. ss> [7, 4, 3, 6, 1, 2]
» Data structure: a way of storing and (7, 4, 3, 6, 1, 2]
organizing data. >>> 10
» Lists allow us to store multiple values 10
using only a single variable to refer to >>> [10]
them! [10]
» Creating lists: provide elements >>> my_list = [7, 4, 3, 6, 1, 2]
separated by comma and enclosed in >>> my_list
square brackets. (7. 4,3, 6, 1 2]
» Lists are a type and represent a value, just >>> type(my_list)
like float, 1nt, bool and str. We can <class 'list'>

assign them to variables, print them, etc.

LISTS

Accessing Lists

» []: creates an empty list.

» We can access a particular value in the
list by using the [] to "index" into the
list.

» Indexing starts at 0!
» Be careful of index out of range errors!

» We can only index from O...
length-1.

» Negative indexing counts back from
the end of the list.

>>> my_list = [7, 4, 3, 6, 1, 2]
>>> my_list[3]
6
>>> my_list[0]
7
>>> my_list[20]
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Vers:

exec(code, self.locals)

File "<input>", 1line 1, 1in <module>
IndexError: 1list index out of range
>>> my_list[-1]

2
>>> type(my_list[3])
<class 'int'>

LISTS 7

Storing other things in lists

» Alistis a contiguous set

>>> ["thiS", Ilisll’ Ilall’ Il'Lis.tII’ IIO.FII’ Ilstr‘ingsll]

of spaces in memory. ['this', 'is', 'a', 'list', 'of', 'strings']
>>> 1list_of_strings = ["this", "is", "a", "list", "of",
>>> 1list_of_strings[0]
} [— , — , — , —] |th' 1
is

. >>> [1, 5.0, "my string"]
» We can store anything 1 5.4 'my string']

in each of these spaces. >> mixed_list = [1, 5.0, "my string"]
>>> type(mixed_1list[0])

°u <class 'int'>

» In general, it's a good ro> type(mixed List[1])

|dea to have IIStS be <class 'float'>

homogeneous, i.e. be of >>> typelnixed list{2])
i.e.

the same type.

<class 'str'>

LISTS

Slicing

» Sometimes, we want more than just one
item from the list (this is called slicing).

» We can specify a range in the square
brackets, [], using the colon (:)

» list[start:end] will return a new
list with the elements from start
index through end-1.

» list[start:] will return a new list
with the elements from start to the
end of the list.

» List[:end] will return a new list with
the elements from 0 through end-1.

» List[:] will return a copy of the
entire list.

>>2

>>2

[32,

>>>
[4,
>>>
[4,

>>2

[32,

>>2>

[32,

>>2

[]

>>2

[_11

list_of_numbers = [32, 4, -1, 15, -20]
list_of_numbers[0:3]

4, -1]
list_of_numbers[1:4]
-1, 15]
list_of_numbers[1:]
-1, 15, -20]
list_of_numbers[:2]
4]

list_of_numbers[:]
4, -1, 15, -20]
list_of_numbers[1:1]

list_of_numbers[-3:-1]
15]

LISTS

Looping over lists

» We can use the for
I()Op to iterate over >>> list_of_numbers = [32, 4, -1, 15, -20]
. . . >>> for value in list_of_numbers:
each item in the list.

print(value)
» This is often called a 32
4
"foreach" loop, i.e. 1
for each item in the 12@

list, do an iteration
of the loop.

LISTS 10
Practice time

» Write a function called sum that returns the sum of all the
values in a list of numbers.

>>> def sum(numbers):
total = 0

for val in numbers:
total += val

return total

>>> sum([13, -2, 47, 9, -5])
62

LISTS

11

Calculating the average of a list - the inelegant way

def inelegant_average(scores):

mmnn

Calculates the average of the values in list scores in an inelegant way
:param scores: (list) a list of numbers that correspond to scores
:return: (float) the average of the values in scores

sum = 0.0

count = 0

for score in scores:
sum += score

count += 1

return sum / count

LISTS

12

Calculating the average of a list - the elegant way

def average(scores):
Calculates the average of the values in list scores in an elegant way
:param scores: (list) a list of numbers that correspond to scores
:return: (float) the average of the values in scores

return sum(scores) / len(scores)

LISTS

Built-in functions over lists

» Length of list

» len(list)
» Max of list

» max(list)
» Min of list

» min(list)
» Sum of list

» sum(list)

>2>2

222

>22

>>>
32

>>>
-20
>>>
30

list_of_numbers = [32, 4, -1, 15, -20]
len(list_of_numbers)

len([])

max(list_of_numbers)

min(list_of_numbers)

sum(list_of_numbers)

LISTS

List methods

» Lists are objects therefore have methods.

» Object: a software bundle that consists of properties and
behavior. Behavior is controlled by methods.

» We call a method of an object using the dot operator.

» Syntax: myL1ist.someMethod(argument)

» https://docs.python.org/3/tutorial/datastructures.html

» Orhelp([])
» Orhelp(list)

14

https://docs.python.org/3/tutorial/datastructures.html

LISTS

append

» Adds a value at the end of a list.

>>> list_of_numbers = [32, 4, -1, 15, -20]
>>> 1list_of_numbers.append(47)

>>> 1list_of_numbers
[32, 4, -1, 15, -20, 47]

» Notice that append does not return a new list, it just
modifies the existing list!

15

LISTS 16

pop

» Removes a value from the end of a list and returns it.

>>> list_of_numbers

[32, 4, -1, 15, -20, 47]
>>> list_of_numbers.pop()
47

>>> list_of_numbers

[32, 4, -1, 15, -20]

» Notice that pop both modifies the list and returns the last value.
If you want to use this value, you need to store it.

>>> popped = list_of_numbers.pop()
>>> popped

-20

>>> list_of_numbers

[32, 4, -1, 15]

» pop also has another version where you can specify the index.

>>> 1list_of_numbers.pop(1)
4

>>> list_of_numbers

[32, -1, 15]

LISTS

1nsert

» Inserts a value at a specific index.

>>> list_of_numbers

[32, -1, 15]

>>> list_of_numbers.insert(2, 100)
>>> 1list_of_numbers

[32, -1, 160, 15]

» Notice that 1nhsert does not return a new list but modifies the
underlying one.

17

LISTS

sort

» Sorts a list in ascending order.

>>> 1list_of_numbers

[32, -1, 160, 15]

>>> list_of_numbers.sort()

>>> 1list_of_numbers

[-1, 15, 32, 100]

>>> 1list_of_strings

['this', 'is', 'a', 'list', 'of', 'strings']
>>> 1list_of_strings.sort()

>>> 1list_of_strings

['a', 'is', 'list', 'of', 'strings', 'this']

» Again, sort does not return a new list but modifies the underlying
one.

18

LISTS 19

scores-list.py

» There is a function called get_scores. It gets the scores and returns them as a list.

» starts with an empty list,

» uses append to add them on to the end of the list,

» returns the list when the loop finishes.

» median function

» sorts the values

» notice again that sort does NOT return a value, but sorts the list that it is
called on.

» returns the middle entry

LISTS 20

Lists are mutable

» We can change (or mutate) the values in a list.

» Notice that many of the methods that we call on lists
change the list itself.

» We can mutate lists with methods, but we can also change
particular indices.

>>> 1list_of_numbers

[-1, 15, 32, 100]

>>> list_of_strings[2] = 100
>>> list_of_numbers

[-1, 15, 32, 100]

TODAY'S LECTURE IN A NUTSHELL

21

Lecture 6: Sequences

» Lists
» Sequences

» Tuples

SEQUENCES

Sequences

» Lists are part of a general category of data structures called sequences.
» Sequences represent a... sequence of things.
» All sequences support a number of shared behavior.

» The ability to index using [].

» The ability to slice using [:].

» A number of built-in functions:

» Len, max, min.
» The ability to iterate over them with a for loop.

» We've actually seen one other sequence. Strings!

22

SEQUENCES

Strings as sequences

>>> fruit = "banana"
>>> fruit[4]
» We can do all sorts of

>>> fruit[2:5]

sequence-like things ‘nan’

. >>> len(fruit)
to strings! .

>>> for letter in fruit:

print(letter)

» Strings, however, are
immutable! We
cannot mutate them.

o oD O oD o T -

>>> fruit[4] = "c"
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.9/1ib/python3.9/code.py", line 90, in runcode
exec(code, self.locals)
File "<input>", 1line 1, in <module>

TypeError: 'str' object does not support item assignment

23

SEQUENCES 24

more-lists.py

» What does the Ll1st-to-string function do?
» Creates a list from a string:

» Takes as input a list. A list of almost any type, as long as we can call
str() on.

» Concatenates all the items in the list into a single string.

» result starts out as the empty string.

» It iterates through each item in the list and concatenates them on to the
result

» Returns the entire result list minus the last element (which is “ *)

SEQUENCES

Alternate way of iterating over lists

>>> for letter in fruit:
print(letter)

o oD OO oS oo T -

>>> for i in range(len(fruit)):
print(fruit[i])

O oD OO oS OO T -

25

SEQUENCES 26
Practice time

» Write a function called multiply_l1ists that takes two

lists of numbers and creates a new list with the values
pairwise multiplied. E.g.,

def multiply_lists(listl, 1list2):

Creates a new list that is the result of the multiplication of two equa
:param listl: (list) the first list of numbers

:param list2: (list) the second list of numbers

:return: (list) a list where each index corresponds to the multiplicati
in listl and list2

>>> 1listl = [11 21 1I 2]
>22].j.551::2 = []-l :Zl Eil 4]

>5> mUltiply_liStS (liStl, liStZ) i lz:il-i?:c'zirc!)::liZS‘.lt-:S:rz*t)e:not of equal length!")
[1 , 4 , 3 , 8] else:

for i in range(len(listl)):
result.append(listl1[i] * list2[i])

result = []

return result

TODAY'S LECTURE IN A NUTSHELL

27

Lecture 6: Sequences

» Lists
» Sequences

» Tuples

TUPLES
Tuples

» Tuple: an immutable list. Type of sequence.

» Tuples can be created using parentheses (instead of []).

>>> my_tuple = (1, 2, 3, 4)

>>> my_tuple

(1, 2, 3, 4)

>>> another_tuple = ("a", "b"™, "c", "d")
>>> another_tuple

(‘a', 'b', 'c', 'd")

» Notice that when they print out, they also show using
parentheses.

28

TUPLES

Tuples as immutable sequences

>>> my_tuple[0]

1

>>> my_tuple[3]

4

>>> for val in my_tuple:
print(val)

D NN

>>> my_tuple[1:3]
(2, 3)
>>> my_tuple[0] = 1
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.9/1ib/python3.9/cod
exec(code, self.locals)

File "<input>", 1line 1, in <module>
TypeError: 'tuple' object does not support item assignment

29

TUPLES

Unpacking tuples

» If we know how many items are in a tuple, we can

>22

>22

>2>2

>2>2

>22

222

"unpack" it into individual variables.

my_tuple = (1, 2, 3)
my_tuple

2, 3)

(x, vy, z) = my_tuple
X

Y

Z

>>> (x, y, z) = (10, 11, 12)

>>> X
10

>>> y
11

>>> 7
12

>>> X, Yy, z = "apple"”,

>>2> X
'apple’
>>> Y
'banana’

>>> Z

'pineapple’

"banana", "pineapple"

30

TUPLES 31

movies.py

» Tuples are useful for representing data with fixed entries.

» Look at the print_movies function movies.py.

» It iterates over the list, just like any other list.

» movie_pailr is atuple (each entry in the list is a tuple). We unpack the tuple to get at the two

values in the tuple.

» We also could have written movie_pair[@] and movie_pair[1l] (see print_movies?2),

though unpacking is much cleaner.

» Once we have the two values, we can print them out

» \t is a special character that represents a tab (like \n, which represents the end of line

character)

» Look atthe print_movies3 function.

» We can unpack the two values of the tuple *in* the for loop. Any of the variants is fine for this class!

https://cs.pomona.edu/classes/cs51a/examples/movies.txt

TUPLES 32

get_movie_score function

» What does the get_movie_score function do?

» Takes two parameters, a movie database and a movie
title.

» It iterates through the movie database and tries to find
the matching title.

» If it finds it, it returns the score.

» If it doesn't find it, it will iterate through all of the movie
entries, finish the for loop and return -1.0

TUPLES 33

Practice time

» Write a function called my_max that takes a list of positive numbers and returns the largest

one.
>>> def my_max(numbers):

max = -1

for num in numbers:
if num > max:
max = num

return max

» Key idea: have a variable that keeps track of the largest number seen so far. At each
iteration, compare the current number to mayx, if it's bigger, update the max value.

» Why initialize it to -1? We need to initialize it to something that is smaller than any of the
values. We could also have done something like max = numbers[@] (assuming that the

input would have at least one value).

TUPLES 34

get_highest_rated_movie function

» What does the get_highest_rated_movie function do?
» Very similar idea to my_max function.

» We're finding the largest score.

» We also keep track of the movie with the highest
score so that we can return that at the end.

TUPLES 35

Practice time

» Write a function called get_movies_above_threshold that

takes as input a movie database and a critic score threshold and
returns all of the movies above that threshold.

def get_movies_above_threshold(movie_db, threshold):

Given a database and a threshold critic score, it returns a list of movies with scores above the threshold
:param movie_db: (list) a list of tuples that correspond to movies (str) and scores (float)

:param threshold: (num) the threshold critic score to filter movies by.

:return: (list) a list of movie titles that have critic scores higher than the threshold

movies_above = []
for (movie, score) in movie_db:
if score >= threshold:

movies_above.append(movie)

return movies_above

ASSIGNED READINGS AND PRACTICE PROBLEMS

36

Resources

» Textbook: Chapters 2 and 10

» scores-list.py

» more-lists.py

» mMOoVies.py

Practice Problems

» Practice 4 (solution)

Homework

» Assignment 3

https://runestone.academy/ns/books/published/thinkcspy/Strings/toctree.html
https://runestone.academy/ns/books/published/thinkcspy/Lists/toctree.html
https://cs.pomona.edu/classes/cs51a/examples/Lecture6/scores-list.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture6/more-lists.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture6/movies.txt
https://cs.pomona.edu/classes/cs51a/problems/practice4.txt
https://cs.pomona.edu/classes/cs51a/problems/practice4-solution.txt

