
CS051A
INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI

24: Higher order functions

Alexandra Papoutsaki

she/her/hers

Lectures

04-26-2023

Zilong Ye

he/him/his

Labs

TODAY’S LECTURE IN A NUTSHELL

Lecture 24: Higher order functions

▸ Higher order functions

2

HIGHER ORDER FUNCTIONS

Higher order functions

3

▸ Have you ever typed a function into the shell, but forgot the parentheses?
def my_function(x):  
 return x+1  
>>> my_function(2)  
3  
>>> my_function  
<function my_function at 0x108e962f0>  
>>> abs  
<built-in function abs>

▸ Notice that it does NOT give an error.

▸ Instead, it echoes the value, just like any other expression, in this case, the
value is a function!
>>> type(my_function)  
<class 'function'>

HIGHER ORDER FUNCTIONS

Higher order functions

4

▸ Functions in python are values, just like everything else!

>>> y = my_function

>>> y

<function my_function at 0x108e962f0>

>>> y(2)

3

>>> my_abs = abs

>>> my_abs(-10)

10

▸ we can pass them as parameters

▸ we can return them from functions

▸ we can even create them on the fly!

HIGHER ORDER FUNCTIONS

higher_order_functions.py

5

▸ What do the first four function in higher_order_functions.py do?

▸ Take two arguments and do standard mathematical calculations

▸ What does add2 do in higher_order_functions.py?

▸ Takes one parameter, a tuple of two items

▸ Unpacks the tuple, adds and returns its items.

▸ What does double do in higher_order_functions.py?

▸ Takes one parameter.

▸ Multiplies by 2 and returns it.

▸ What does is_even do in higher_order_functions.py?

▸ Takes one parameter, a number.

▸ Returns whether this number is even.

HIGHER ORDER FUNCTIONS

higher_order_functions.py

6

▸ What does apply_function do in higher_order_functions.py?

▸ Takes three parameters

▸ the first is a function!

▸ applies the function passed as the first argument to the second and third argument and returns the result.

▸ We can call our apply_function function:

 >>> apply_function(add, 2, 3)

5

>>> apply_function(subtract, 2, 3)

 -1

▸ To pass a function as a parameter you just give the name of the function as the argument.

▸ def. What the keyword def actually does is:

▸ create a new function

▸ assign that function to a variable with the name of the function.

HIGHER ORDER FUNCTIONS

higher_order_functions.py

7

https://pythontutor.com/visualize.html#mode=display

HIGHER ORDER FUNCTIONS

higher_order_functions.py

8

▸ What does the apply_function_to_list function do in higher_order_functions.py?

▸ takes a function and a list as parameters

▸ you can tell that the parameter f is a function because we apply it in the line with the append in it

▸ iterates through each value in the list

▸ applies the function f

▸ appends the result of the function f to a list that is returned at the end.

▸ High-level: applies the function to each element in the list and returns a new list containing the result
from each of those applications

▸ For example:
>>> apply_function_to_list(double, [1, 2, 3, 4])  
[2, 4, 6, 8]  
>>> apply_function_to_list(add2, [(1, 2), (3, 4)])  
[3, 7]

HIGHER ORDER FUNCTIONS

higher_order_functions.py

9

▸ What does the apply_function_to_tuple function do
in higher_order_functions.py?

▸ takes a function and a list of two 2-tuples as parameters

▸ The function should take two parameters

▸ iterates through each 2-tuple in the list and unpacks it

▸ applies the function f on the two items

▸ appends the result of the function f to a list that is returned at the end.

▸ For example:
>>> apply_function_to_tuple(add, [(1, 2), (3, 4)])  
[3, 7]

HIGHER ORDER FUNCTIONS

map

10

▸ apply_function_to_list is actually built in to python and is called map:
>>> help(map)  
Help on class map in module builtins:  
class map(object)  
| map(func, *iterables) --> map object  
|  
| Make an iterator that computes the function using arguments from  
| each of the iterables. Stops when the shortest iterable is exhausted.

▸ Takes as input a function and something that is iterable

▸ only difference from apply_function_to_list is that it returns a map object (not a list), which is also iterable.

>>> map(double, [1, 2, 3, 4])  
<map object at 0x7f7ff809b128>  
>>> for val in map(double, [1, 2, 3, 4]):  
 print(val)

2

4

6

8

HIGHER ORDER FUNCTIONS

map

11

▸ By itself, this may not seem useful, but we can do
more complicated things. What would this print?

>>> for val in map(double, map(double, [1, 2, 3, 4])):

 print(val)

▸ The first map doubles it and then we iterate on this
result and double it again!

HIGHER ORDER FUNCTIONS

filter

12

▸ What does the filter_list function do in higher_order_functions.py code?

▸ Also takes a function some_function and a list some_list as parameters

▸ Are there any expectations on what some_list should do/return?

▸ it's used in an if statement

▸ it should return a bool, i.e. True or False

▸ Similarly to map, Python has a built-in function for this behavior called filter.

▸ The filter function returns a list of all elements of some_list that would return True when passed to
some_function. Note how it differs from map.

▸ For example,

>>> list(map(is_even, [1, 2, 3, 4]))

[False, True, False, True]

>>> list(filter(is_even, [1, 2, 3, 4]))

[2, 4]

HIGHER ORDER FUNCTIONS

Lambda

13

▸ It can be a bit annoying having to write all of these simple functions to simply pass them as an argument to
another function.

▸ Python allows us to create anonymous functions, i.e., functions that don't have an explicit name, but are
simply code.

▸ The syntax is:
lambda <input>: <expression>

▸ <input> is the parameter to the anonymous function.

▸ If you need to pass multiple inputs, just pass them as a tuple.

▸ <expression> is the body of the function that is executed and returned. It can only be a single expression
(i.e., something that represents a value).

▸ An example:
>>> lambda x: x+1  
<function <lambda> at 0x7f7ff80981e0>

▸ Notice that it gives the same function type back, but it doesn't have a name!
>>> (lambda x: x+1)(2)  
3

HIGHER ORDER FUNCTIONS

Lambda

14

▸ We can also associate it with a variable and call it, e.g.,

f = lambda x: x+1  
>>> f(2)  
3

▸ Makes life easier!

>>> filter_list(lambda num: num % 2 == 0, [1, 2, 3, 4])  
[2, 4]

HIGHER ORDER FUNCTIONS

Lambda

15

▸ Let’s look at this unusual function that returns a… function

def kinda_crazy(num):  
 def multiplier(x):  
 return num * x  
 return multiplier  
 
>>>type(kinda_crazy(3))  
<class 'function'>  
>>>kinda_crazy(3)(2)  
6

▸ We could use an anonymous function to be even more concise!
def crazy(num):  
 return lambda x: num * x  
>>> crazy(3)(2)  
6

HIGHER ORDER FUNCTIONS

Monte Carlo sampling

16

▸ Monte Carlo methods are a way of determining the answer to numerical problems via random sampling.

▸ General idea:

▸ generate random samples

▸ look at the outcome of those random samples

▸ use the answer to the outcomes to estimate the answer for the original problem.

▸ An example: calculating the area of a shape

▸ We want to calculate the area of a shape. Specifically, if I draw an arbitrary shape within a 1 by 1 box, can you tell me the
area?

▸ kind of hard!

▸ What if I put a bunch of points uniformly in the box. Could I tell how many are inside the shape?

▸ e.g., if I put 1000 points in the box with a triangle shape, how many would you expect in the triangle?

▸ about 500

▸ what would be the area of the triangle?

▸ 500/1000 = 0.5

▸ key idea: use the proportion of points that fall inside the shape to estimate the area.

HIGHER ORDER FUNCTIONS

montecarlo.py

17

▸ Assuming and what does the
in_triangle function do?

▸ Returns true if x and y are within the red triangle

0 ≤ x ≤ 1 0 ≤ y ≤ 1

HIGHER ORDER FUNCTIONS

montecarlo.py

18

▸ Assuming and what does the
does the in_circle function do?

▸ Returns true if x and y are inside the quarter circle.

0 ≤ x ≤ 1 0 ≤ y ≤ 1

HIGHER ORDER FUNCTIONS

montecarlo.py

19

▸ Write a function monte_carlo that takes two parameters:
number of trials (samples) and a shape function

▸ generate "trials" random points (x, y points between 0 and 1)

▸ count how many are "inside" the shape

▸ return the proportion, i.e., count/trials.

▸ Hint:

▸ import random

▸ random.random() # returns random value between 0 and 1

HIGHER ORDER FUNCTIONS

montecarlo.py

20

▸ Look at the monte_carlo function in montecarlo.py code

▸ We can use this to estimate the area of different shapes:

>>> monte_carlo(1000, in_triangle)

0.484

>>> monte_carlo(10000, in_triangle)

0.5005

>>> monte_carlo(100000, in_triangle)

0.49756

>>> monte_carlo(100000, in_circle)

0.7854

>>> monte_carlo(100000, in_circle)*4

3.14896

>>> monte_carlo(1000000, in_circle)*4

3.141972

>>> monte_carlo(10000000, in_circle)*4  
3.141894

ASSIGNED READINGS AND PRACTICE PROBLEMS

Resources

▸ higher-order_functions.py

▸ montecarlo.py

21

Homework
▸ Assignment 12 (cont’d)

https://cs.pomona.edu/classes/cs51a/examples/Lecture24/higher_order_functions.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture24/montecarlo.txt

