
CS051A
INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI

23: Exceptions and sets

Alexandra Papoutsaki

she/her/hers

Lectures

04-24-2023

Zilong Ye

he/him/his

Labs

TODAY’S LECTURE IN A NUTSHELL

Lecture 23: Exceptions and sets

▸ Administrative

▸ Exceptions

▸ Sets

2

ADMINISTRATIVE

Administrative

3

▸ Last assignment!

▸ You will build a web crawler for Pomona webpages.

▸ No Ethics reading

▸ Apply to be a TA for CS51P

▸ Apply to be a student liaison

TODAY’S LECTURE IN A NUTSHELL

Lecture 23: Exceptions and sets

▸ Administrative

▸ Exceptions

▸ Sets

4

EXCEPTIONS

list_max function in exceptions.py

5

▸ Are there any list inputs that would give an error?

▸ non-numerical

▸ empty lists

▸ How could we fix this?

▸ check if its equal to the empty list

▸ print an error message

▸ return ???

▸ A better way to fix this is to raise an exception (like you've probably
seen for other problems)

EXCEPTIONS

Exceptions

6

▸ Exceptions are another way of communicating information from a function/expression:
 >>> 1/0
 Traceback (most recent call last):
 Python Shell, prompt 3, line 1
 builtins.ZeroDivisionError: division by zero

▸ they allow us to give information back from a function besides return.

▸ if we don't do anything about them, exceptions will cause the program to terminate.

EXCEPTIONS

Raising exceptions

7

▸ Look at the list_max_better function in exceptions.py

▸ to raise an exception, you use the keyword raise and then create a
new Exception object
>>> list_max_better([1, 2, 3])
3
>>> list_max_better([])
Traceback (most recent call last):
Python Shell, prompt 3, line 1
Used internally for debug sandbox under external interpreter
File "/Users/apaa2017/classes/cs51a/examples/exceptions.py", line 12,
in <module>
raise Exception("list must be non-empty")
builtins.Exception: list must be non-empty

EXCEPTIONS

get_scores function in exceptions.py

8

▸ Are there any inputs that the user could enter that would cause a
problem? Specifically, cause the function to exit early?
>>> get_scores()
Enter the scores one at a time. Blank score finishes.
Enter score: 1
Enter score: banana
Traceback (most recent call last):
Python Shell, prompt 2, line 1
#Used internally for debug sandbox under external interpreter
File "/Users/apaa2017/classes/cs51a/examples/exceptions.py", line 29,
in <module>
scores.append(float(line))
builtins.ValueError: could not convert string to float: 'banana'

EXCEPTIONS

get_scores function in exceptions.py

9

▸ If we enter a non-numerical value, we get a “ValueError”.

▸ What would you like to do instead?

▸ It’s better to prompt the user to enter a number and try again

▸ How can we do this?

▸ One way would be to check that the string is a valid number.

▸ kind of a pain (decimal numbers, positive/negative
numbers, even scientific notation is fair game, e.g., 1.3e10).

▸ Better way: handle the exception and deal with it.

EXCEPTIONS

try/except

10

▸ We can catch an exception and deal with it using a try/handle block:
try:  
 # Some code that could raise an exception  
except ExceptionName:  
 # what to do if exception occurs

▸ The code in the block is executed.

▸ If no exception is raised, the code finishes and the code in the except block is
skipped and the code keeps running.

▸ If an exception occurs, the code in the try block is immediately exited.

▸ If it's of the type in the except block, the code in the except block executes
and then the code keeps running after that.

▸ if it's another exception, it exits.

EXCEPTIONS

get_scores_better function in exceptions.py

11

▸ We can handle the ValueError exception and print out an
error message, but keep going
>>> get_scores_better()  
Enter the scores one at a time. Blank score
finishes.  
Enter score: 1  
Enter score: banana  
Enter numbers only!  
Enter score: 2  
Enter score:  
[1.0, 2.0]

EXCEPTIONS

print_file_stats function in exceptions.py

12

▸ where could we get exceptions from this code?

▸ file doesn't exist!

▸ if the file is empty, then we could also get a divide
by zero error.

EXCEPTIONS

print_file_stats_better function in exceptions.py

13

▸ if we have multiple exceptions, we can have multiple
except blocks.

▸ Each block will only be executed if an exception of
that type is raised.

▸ In the case of the divide by zero error, we'll already
have printed out some information (number of words,
longest word, shortest word). All we want to do is not
have an error raised.

EXCEPTIONS

print_file_stats_better function in exceptions.py

14

▸ pass

▸ certain control statements expect code to be there
(e.g., if/then, try/except).

▸ pass can be used as a non-operation: it is code, but
it doesn't do anything.

TODAY’S LECTURE IN A NUTSHELL

Lecture 23: Exceptions and sets

▸ Administrative

▸ Exceptions

▸ Sets

15

SETS

Sets

16

▸ what is a set, e.g., a set of data points?

▸ an unordered collection of data

▸ How does this differ from a list?

▸ a list has a sequential order to it

▸ What operations/methods might we want from a set?

▸ create new/construct a set

▸ add things to the set

▸ remove things from the set

▸ ask if something belongs in the set

▸ intersection of two sets

▸ union of two sets

SETS

set class

17

▸ >>> help(set)

▸ We can construct a new set using a
constructor or using {} (kind of like
dictionaries).
>>> s = set()  
>>> s  
{}  
>>> s = set([4, 3, 2, 1])  
>>> s  
{1, 2, 3, 4}  
>>> s = {4, 3, 2 ,1}  
{1, 2, 3, 4}  
>>> s = set("abcd")  
>>> s  
{'a', 'c', 'b', 'd'}  
>>> s = {1, 1, 1, 1, 2, 2}  
{1, 2}

▸ notice that there are two
constructors, the empty
constructor (set(), which created
an empty set and a constructor
that took a single parameter,
anything that is iterable, e.g., a list,
a string, in general, any thing that
we can iterate over in a for loop.

▸ Notice that even though we may
give it something where there is
ordering, the ordering is NOT
guaranteed to be preserved.

SETS

set methods

18

▸ From the help output, which of the following are mutator vs. accessor?

▸ add

▸ clear

▸ difference

▸ difference_update

▸ intersection

▸ intersection_update, …

▸ Other interesting methods:

▸ pop

▸ remove

▸ isdisjoint

▸ issubset

▸ issuperset

▸ union

▸ update

SETS

set methods

19

▸ supports most of the methods you'd want for a set:
>>> s = {1,2,3,4}  
>>> s.add(5)  
>>> s  
{1, 2, 3, 4, 5}  
>>> s2 = set([4, 5, 6, 7])  
>>> s2  
{4, 5, 6, 7}  
>>> s.difference(s2)  
{1, 2, 3}  
>>> s  
{1, 2, 3, 4, 5}  
>>> s2  
{4, 5, 6, 7}  
>>> s.union(s2)  
{1, 2, 3, 4, 5, 6, 7}  
>>> s.intersection(s2)  
{4, 5}  
>>> s  
{1, 2, 3, 4, 5]}  
>>> s2  
{4, 5, 6, 7}

SETS

set methods

20

▸ we can also ask if an item is in a set:
>>> s = {1,2,3,4}  
>>> s2 = set([4, 5, 6, 7])  
>>> 1 in s2  
False  
>>> 5 in s2  
True  
>>> "abc" in s2  
False  
>>> s2 in s2  
False

▸ Notice that you CANNOT index into a set (there is no order)
>>> s[0]  
Traceback (most recent call last):  
File "<string>", line 1, in <fragment>  
TypeError: 'set' object does not support indexing

SETS

Why sets?

21

▸ seems like we could do all of these things and more with lists?

▸ list has all of the operations like add, pop, find that sets have.

▸ Sets have some nice operations like union and intersection, but we could
put these in the list class

▸ In fact, lists also support the "in" notation
>>> some_list = [1, 2, 3, 4]
>>> 4 in some_list
 True
>>> "abc" in some_list
False

▸ Why have the separate class for set then?

▸ Performance!

SETS

Why sets?

22

▸ Write the following function:

▸ contains(list, item)

▸ returns True if the item is in the list

▸ false otherwise

▸ don't use "in" or "find"

▸ def contains(list, item):
 for thing in list:  
 if thing == item:  
 return True  
 return False

▸ If we're searching for an item and we double the size of the list, how much longer (on average) do you think it would take to run this
function?

▸ Twice as long since we're looping through each item in the list

▸ Computers are fast, but there still is a cost to each operation

▸ What if we quadrupled the size of the list?f

▸ Four times as long

▸ The contains function above is called a "linear" runtime function

SETS

lists_vs_sets.py

23

▸ Two functions for generating data:

▸ generate_set: generates random points and puts them into a set.

▸ generate_list: generates random points and puts them into a list.

▸ query_data

▸ generates num_queries random numbers

▸ uses in to see if they are in the data set

▸ times how long it takes to do num_queries

▸ speed_test

▸ generates equal sized data sets in both list and set form

▸ then calls query_data to see how long it takes to query each one

SETS

lists_vs_sets.py

24

▸ >>> speed_test(1000, 100)  
List creation took 0.003422
seconds  
Set creation took 0.003589
seconds  
--  
List querying took 0.002917
seconds  
Set querying took 0.000194
seconds

▸ For small sizes, they behave fairly
similarly. As we increase the size of the
set and the number of queries, however,
we start to see some differences

>>> speed_test(10000, 100)

List creation took 0.023313 seconds

Set creation took 0.021885 seconds

--

List querying took 0.021288 seconds

Set querying took 0.000179 seconds

>>> speed_test(10000, 1000)

List creation took 0.020332 seconds

Set creation took 0.021198 seconds

--

List querying took 0.213577 seconds

Set querying took 0.001833 seconds

>>> speed_test(100000, 1000)

List creation took 0.186876 seconds

SETS

lists_vs_sets.py

25

▸ we can better understand these by generating points as we
increase the size of the set/list and then plotting them (we can
do it in Excel or in Python)

>>> speed_data(5000, 10000, 100000, 5000)

size list set

10000 0.237790 0.001881

15000 0.358325 0.001999

20000 0.469743 0.001956

25000 0.602107 0.001916

30000 0.687776 0.001889

35000 0.824027 0.001903

40000 0.921235 0.001952

45000 1.009843 0.001912

50000 1.156059 0.001927

55000 1.386080 0.001913

60000 1.566058 0.001984

60000 1.566058 0.001984

65000 1.722870 0.001936

70000 2.025138 0.001966

75000 2.363384 0.001962

80000 2.619580 0.002030

85000 2.897005 0.002054

90000 2.975576 0.001946

95000 3.418256 0.002082

SETS

When to use a set vs a list?

26

▸ Lists have an ordering.

▸ If you need indexing, use a list

▸ Sets are faster for asking membership

▸ if you don't care about the order, use a set!

ASSIGNED READINGS AND PRACTICE PROBLEMS

Resources

▸ Textbook: Chapter 3 and Chapter 13

▸ exceptions.py

▸ lists_vs_sets.py

27

Homework
▸ Assignment 12

https://runestone.academy/ns/books/published/thinkcspy/Debugging/toctree.html
https://runestone.academy/ns/books/published/thinkcspy/Exceptions/toctree.html
https://cs.pomona.edu/classes/cs51a/examples/Lecture23/exceptions.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture23/lists_vs_sets.txt

