CS051A

INTRO TO COMPUTER SCIENCE WITH TOPICS IN Al
22: Web Pages

7 3 Alexandra Papoutsaki

TODAY'S LECTURE IN A NUTSHELL

Lecture 22: Web pages

» Web pages

WEB PAGES

Web Pages

» what is a web page or more specifically what's in a web page?
» just a text file with a list of text, formatting information, commands, etc. Usually ends in .html
» Generally made up from three things:
» HTML (HyperText Markup Language): this is the main backbone of the page
» CSS (cascading style sheets): contains style and formatting information
» JavaScript: for handling dynamic content and other non-static functionalities
» This text is then parsed by the web browser to display the content
» You can view the html source of a web page from your browser
» In Safari: View->View Source
» In Firefox: View->Page Source

» In Chrome: View->Developer->View Source

WEB PAGES

html| content

» html consists of tags
(a tag starts with a '<' and ends with a '>")

» Generally, tags come in pairs, with an opening tag and a closing tag, e.g.
<html> ... </html|>

» Lots of documentation online for html

» A good tutorial https://www.w3schools.com/html/

» We use URLs (Uniform Resource Locator) as addresses to access webpages.

» If we look at the course webpage
(http://www.cs.pomona.edu/classes/cs51a/), we can see the html that
generates it.

» The default webpage for many web servers is index.html

https://www.w3schools.com/html/
http://www.cs.pomona.edu/classes/cs51a/

WEB PAGES

Reading from web pages using urllib.request

» Look atthe url_basics.py. What does the print_data function do?
» looks very similar to other functions we've seen before for reading data
» key difference: we're reading from a webpage!
» To read from a webpage, we need to open a connection to it (like opening a file)
» There is a package urllib.request that supports various web functionality
» The main function we'll use is urlopen
» from urllib.request import urlopen

» once you have a connection open, you can read it a line at a time, like from a
file, etc.

WEB PAGES

print_data function inurl_basics.py

» If we run this on the course webpage we see the following output:

» >>> print_data(“http://www.cs.pomona.edu/classes/cs51la/")
b’..°

» Which mirrors roughly the same text we saw through our browser but starts with b.

» These aren't actually strings. We can check the type by adding an extra print statement

» print(type(line))
» If we run again with the type information printed out we see:

» <class ‘bytes'>

» bytes is another class that represents raw data

» Webpages can contain a wide range of characters (e.g., Chinese characters)

» We need to know how to interpret the raw data to turn it into characters.

WEB PAGES

print_url_data functioninurl_basics.py

» timeout is an optional parameter that specifies a timeout in seconds for

blocking operations like the connection attempt. It will be useful in the next
assignment.

» Often web pages will have as metadata the character encoding to use.

» For our purposes, we'll just make a best guess at a common encoding
scheme, ISO-8859-1, which handles a fair amount of web pages.

» The bytes class has a 'decode' method that will turn the bytes into a string

» If we run print_url_data, we'll see that we get the same output, but now
as strings:

» >>> print_url_data(“http://waw.cs.pomona.edu/classes/cs51la/")

WEB PAGES

get_lectures_url functioninurl_extractor.py

» What does the get_lectures_urls function do?

» opens up the course web page
» reads a line at a time

» checks each line to see if it contains a link to lecture
slides and if so, keeps track of it in a list

WEB PAGES

get_lectures_url functioninurl_extractor.py

» str.find(some_string):
» returns the index in str where some_string occurs, or -1 if it doesn't.
» starts searching from the beginning of the string
» str.find(some_string, start_index)
» rather than starting at the beginning, start searching at start_index.
>>> "banana".find("ana")
1
>>> "banana".find("ana",2)

3

WEB PAGES 10

get_lectures_urls function in url_extractor.py

» what does begin_index = line.find(search_line) do?
» finds where the lecture strings starts.

» what does end_index = line.find('"', begin_index)
do?

» searching for the end of the link.

» The html syntax for linking to a page is
l1ink

WEB PAGES 11

write_list_to_f1ile functioninurl_extractor.py

» Opens afile, this time with “W" mode as a second parameter instead of “r".
» "w" stands for write
» if the file doesn't exist it will create it
» if the file does exists, it will erase the current contents and overwrite it (be careful!)

» We can also write to a file without overwriting the contents, but instead appending to
the end

» We would use the “a" mode which stands for append
» Just like with reading from a file, we get a file object from open
» The "write" method writes an object to the file as a string

11/
!

» Write does NOT put a line return after the end of it. You will need “\n

WEB PAGES

write_lectures function in url_extractor.py

» Gets the lecture urls from the course web page

» COURSE_PAGE is written in all caps to indicate a

constant, a variable whose value should not be
changed by the user.

» Writes them to the outfile.

12

WEB PAGES

Revisiting url_extractor.py

» Look at the webpage http://cs.pomona.edu/classes/cs51a/

» Now look at the output: do we get all of the lecture slides links?

» No! We miss the ones with the notes. Why?
» The code assumes one lecture per line, but that's not true

» How do we fix this?
» rather than searching per line, treat the entire webpage as a long string
» search for the first occurrence of lecture,

» extract it,

» then search again starter at the end of that occurrence.

13

http://cs.pomona.edu/classes/cs51a/

WEB PAGES 14

get_lectures_urls_improved functioninurl_extractor_improved.py

» Look at the get_lectures_urls_improved function
» read() method reads and returns the entire contents all at once rather than reading a line at a time.

» This also works on files!

v

We then decode this so that page_text has all of the webpage text as a string.
» What does begin_index = page_text.find(search_line) do?
» searches for the index of the first occurrence of Lectures/
» The code will enter the while loop if it finds an occurrence.
» What does end_index = page_text.find('"', begin_index) do?
» searches for the end of the link. We can then extract the url
» What does begin_index = page_text.find(search_line, end_index) do?
» searches again, but now starting at end_1index, the end of the last link found

» If we run the improved version, we now get the notes links, too.

WEB PAGES 15

get_note_files_only functioninurl_extractor_improved.py

» Function that allows us to just extract the name of the
file (e.g, Lecture1.pdf).

» key change: we want to skip the "lectures/" part when
extracting the page.

» rather than using begin_1index, we want to skip
the length of "lectures/" forward when extracting.

WEB PAGES 16

Difference between http and https

» The 's' stands for secure. When you communicate with an https website:

>

you get some reassurance that you're actually communicating with the website
(rather than someone pretending to be the website).

your communications are encrypted so it's difficult to see what information you're
sending back and forth.

there is a bit of overhead in setting up this communication properly
the right way is to install SSL certificates for python.

for simplicity, however, you can also tell python to simply ignore the SSL certificates
and connect to an https site without checking.

Look at url_basics_ssl.py code

» urlopen has an optional parameter that you can specify that will allow you to
connect to an https webpage without checking ssl certificates.

ASSIGNED READINGS AND PRACTICE PROBLEMS

17

Resources

» url_basics.py

» url_extractor.py

» url_extractor_improved.py

» url_basics_ssl.py

Homework

» Assignment 11 (cont’d)

https://cs.pomona.edu/classes/cs51a/examples/Lecture22/url_basics.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture22/url_extractor.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture22/url_extractor_improved.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture22/url_basics_ssl.txt

