
CS051A

INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI

22: Web Pages

Alexandra Papoutsaki

she/her/hers

Lectures

04-19-2023

Zilong Ye

he/him/his

Labs

TODAY’S LECTURE IN A NUTSHELL

Lecture 22: Web pages

▸ Web pages

2

WEB PAGES

Web Pages

3

▸ what is a web page or more specifically what's in a web page?

▸ just a text file with a list of text, formatting information, commands, etc. Usually ends in .html

▸ Generally made up from three things:

▸ HTML (HyperText Markup Language): this is the main backbone of the page

▸ CSS (cascading style sheets): contains style and formatting information

▸ JavaScript: for handling dynamic content and other non-static functionalities

▸ This text is then parsed by the web browser to display the content

▸ You can view the html source of a web page from your browser

▸ In Safari: View->View Source

▸ In Firefox: View->Page Source

▸ In Chrome: View->Developer->View Source

WEB PAGES

html content

4

▸ html consists of tags  
(a tag starts with a '<' and ends with a '>')

▸ Generally, tags come in pairs, with an opening tag and a closing tag, e.g.
<html> ... </html>

▸ Lots of documentation online for html

▸ A good tutorial https://www.w3schools.com/html/

▸ We use URLs (Uniform Resource Locator) as addresses to access webpages.

▸ If we look at the course webpage  
(http://www.cs.pomona.edu/classes/cs51a/), we can see the html that
generates it.

▸ The default webpage for many web servers is index.html

https://www.w3schools.com/html/
http://www.cs.pomona.edu/classes/cs51a/

WEB PAGES

Reading from web pages using urllib.request

5

▸ Look at the url_basics.py. What does the print_data function do?

▸ looks very similar to other functions we've seen before for reading data

▸ key difference: we're reading from a webpage!

▸ To read from a webpage, we need to open a connection to it (like opening a file)

▸ There is a package urllib.request that supports various web functionality

▸ The main function we'll use is urlopen

▸ from urllib.request import urlopen

▸ once you have a connection open, you can read it a line at a time, like from a
file, etc.

WEB PAGES

print_data function in url_basics.py

6

▸ If we run this on the course webpage we see the following output:

▸ >>> print_data(“http://www.cs.pomona.edu/classes/cs51a/")  
b’…’

▸ Which mirrors roughly the same text we saw through our browser but starts with b.

▸ These aren't actually strings. We can check the type by adding an extra print statement

▸ print(type(line))

▸ If we run again with the type information printed out we see:

▸ <class ‘bytes'>

▸ bytes is another class that represents raw data

▸ Webpages can contain a wide range of characters (e.g., Chinese characters)

▸ We need to know how to interpret the raw data to turn it into characters.

WEB PAGES

print_url_data function in url_basics.py

7

▸ timeout is an optional parameter that specifies a timeout in seconds for
blocking operations like the connection attempt. It will be useful in the next
assignment.

▸ Often web pages will have as metadata the character encoding to use.

▸ For our purposes, we'll just make a best guess at a common encoding
scheme, ISO-8859-1, which handles a fair amount of web pages.

▸ The bytes class has a 'decode' method that will turn the bytes into a string

▸ If we run print_url_data, we'll see that we get the same output, but now
as strings:

▸ >>> print_url_data(“http://www.cs.pomona.edu/classes/cs51a/")  
'...'

WEB PAGES

get_lectures_url function in url_extractor.py

8

▸ What does the get_lectures_urls function do?

▸ opens up the course web page

▸ reads a line at a time

▸ checks each line to see if it contains a link to lecture
slides and if so, keeps track of it in a list

WEB PAGES

get_lectures_url function in url_extractor.py

9

▸ str.find(some_string):

▸ returns the index in str where some_string occurs, or -1 if it doesn’t.

▸ starts searching from the beginning of the string

▸ str.find(some_string, start_index)

▸ rather than starting at the beginning, start searching at start_index.

 >>> "banana".find("ana")

 1

 >>> "banana".find("ana",2)

 3

WEB PAGES

get_lectures_urls function in url_extractor.py

10

▸ what does begin_index = line.find(search_line) do?

▸ finds where the lecture strings starts.

▸ what does end_index = line.find('"', begin_index)
do?

▸ searching for the end of the link.

▸ The html syntax for linking to a page is 
link

WEB PAGES

write_list_to_file function in url_extractor.py

11

▸ Opens a file, this time with “w" mode as a second parameter instead of “r".

▸ "w" stands for write

▸ if the file doesn't exist it will create it

▸ if the file does exists, it will erase the current contents and overwrite it (be careful!)

▸ We can also write to a file without overwriting the contents, but instead appending to
the end

▸ We would use the “a" mode which stands for append

▸ Just like with reading from a file, we get a file object from open

▸ The "write" method writes an object to the file as a string

▸ Write does NOT put a line return after the end of it. You will need “\n”!

WEB PAGES

write_lectures function in url_extractor.py

12

▸ Gets the lecture urls from the course web page

▸ COURSE_PAGE is written in all caps to indicate a
constant, a variable whose value should not be
changed by the user.

▸ Writes them to the outfile.

WEB PAGES

Revisiting url_extractor.py

13

▸ Look at the webpage http://cs.pomona.edu/classes/cs51a/

▸ Now look at the output: do we get all of the lecture slides links?

▸ No! We miss the ones with the notes. Why?

▸ The code assumes one lecture per line, but that's not true

▸ How do we fix this?

▸ rather than searching per line, treat the entire webpage as a long string

▸ search for the first occurrence of lecture,

▸ extract it,

▸ then search again starter at the end of that occurrence.

http://cs.pomona.edu/classes/cs51a/

WEB PAGES

get_lectures_urls_improved function in url_extractor_improved.py

14

▸ Look at the get_lectures_urls_improved function

▸ read() method reads and returns the entire contents all at once rather than reading a line at a time.

▸ This also works on files!

▸ We then decode this so that page_text has all of the webpage text as a string.

▸ What does begin_index = page_text.find(search_line) do?

▸ searches for the index of the first occurrence of lectures/

▸ The code will enter the while loop if it finds an occurrence.

▸ What does end_index = page_text.find('"', begin_index) do?

▸ searches for the end of the link. We can then extract the url

▸ What does begin_index = page_text.find(search_line, end_index) do?

▸ searches again, but now starting at end_index, the end of the last link found

▸ If we run the improved version, we now get the notes links, too.

WEB PAGES

get_note_files_only function in url_extractor_improved.py

15

▸ Function that allows us to just extract the name of the
file (e.g, Lecture1.pdf).

▸ key change: we want to skip the "lectures/" part when
extracting the page.

▸ rather than using begin_index, we want to skip
the length of "lectures/" forward when extracting.

WEB PAGES

Difference between http and https

16

▸ The 's' stands for secure. When you communicate with an https website:

▸ you get some reassurance that you're actually communicating with the website
(rather than someone pretending to be the website).

▸ your communications are encrypted so it's difficult to see what information you're
sending back and forth.

▸ there is a bit of overhead in setting up this communication properly

▸ the right way is to install SSL certificates for python.

▸ for simplicity, however, you can also tell python to simply ignore the SSL certificates
and connect to an https site without checking.

▸ Look at url_basics_ssl.py code

▸ urlopen has an optional parameter that you can specify that will allow you to
connect to an https webpage without checking ssl certificates.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Resources

▸ url_basics.py

▸ url_extractor.py

▸ url_extractor_improved.py

▸ url_basics_ssl.py

17

Homework
▸ Assignment 11 (cont’d)

https://cs.pomona.edu/classes/cs51a/examples/Lecture22/url_basics.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture22/url_extractor.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture22/url_extractor_improved.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture22/url_basics_ssl.txt

