
CS051A
INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI

2: Functions

Alexandra Papoutsaki

she/her/hers

Lectures

01-23-2023

Zilong Ye

he/him/his

Labs

TODAY’S LECTURE IN A NUTSHELL

Lecture 2: Functions

▸ Administrative

▸ Syntax

▸ Functions

2

ADMINISTRATIVE

This week

3

▸ First lab today or tomorrow.

▸ Read handout beforehand.

▸ Installation of Python and PyCharm and explanation of Gradescope.

▸ Practice with running programs and using the Python shell
(console).

▸ First assignment due this coming Sunday.

▸ Mentor sessions begin today.

▸ Check schedule on course website. TAs’ Zoom links on Slack.

https://cs.pomona.edu/classes/cs51a/assignments/lab1.pdf
https://cs.pomona.edu/classes/cs51a/assignments/assign1.pdf

TODAY’S LECTURE IN A NUTSHELL

Lecture 2: Functions

▸ Administrative

▸ Syntax

▸ Functions I

▸ Strings

▸ Functions II

4

SYNTAX

Syntax in English and in programming languages

5

▸ In English: arrangement of words and phrases to create well-
formed sentences.

▸ "I like dogs" is syntactically correct

▸ "I dog like" is not syntactically correct

▸ Programming languages also have their own syntax, that is their
own rules of what code valid in that language.

▸ In contrast to English, programming languages are less forgiving
to syntax errors: the computer won’t get the gist of our program.

SYNTAX

Syntax errors

6

▸ In our brief Python adventures, have we seen any
examples of syntax?

▸ All of the math operations have implicit syntax, e.g., we
can’t just write 4 + and leave it as is.

▸ Similar issues can arise if we flip an assignment.

SYNTAX

Syntax errors in PyCharm

7

▸ Both the Python shell (console) and program mode will
recognize syntax errors.

▸ Luckily, most of the times, Python will indicate the correct
line that the syntax error occurred.

▸ Sometimes though, an error might be elsewhere,
probably before the line that is highlighted.

TODAY’S LECTURE IN A NUTSHELL

Lecture 2: Functions

▸ Administrative

▸ Syntax

▸ Functions

8

FUNCTIONS

Beyond a basic math calculator

9

▸ What other mathematical operations might we want from
our calculator?

▸ abs, round, min, max etc.

▸ These operations are supported by functions.

FUNCTIONS

Functions

10

▸ A function in Python has:

▸ A name

▸ Zero or more parameters (i.e. inputs)

▸ Generally, does something

▸ Gives us back a value (not all functions do this)

FUNCTIONS

Built-in Python functions

11

▸ abs(number): returns the absolute value of the specified number

▸ e.g., abs(-2) will return 2.

▸ round(number): returns a number that is the rounded version of
the specified number.

▸ e.g., round(2.8) will return 3.

▸ int(number): returns the integer part of a specified number by
throwing away decimals.

▸ e.g., int(2.8) will return 2.

FUNCTIONS

Function type

12

▸ type(expression): returns type of the specific expression. E.g.,

▸ Note that all of these functions take a single parameter and give us
back (return) a value,

▸ We'll talk more later about what it means to "give back" a value, but
some functions will simply "do something" and then not return a value.

FUNCTIONS

Defining your own functions

13

▸ Allows you to bundle together code and reuse it.

▸ Remember, the important components for a function are:

▸ the name of the function,

▸ the parameters (if any) the function takes,

▸ what the function does,

▸ what value (if any) it returns/gives you back when it's
done.

FUNCTIONS

Syntax for defining your own functions

14

def function_name(parameter1, parameter2, ...) :

 statement1

 statement2

 ...

 return expression # this is optional

▸ function_name is the name of the function (i.e. what you want it to be called)

▸ parameter1, parameter2, … are the list of parameters that are expected

▸ you can use the parameters in the body of the function like variables.

▸ when you call the function, the number of parameters specifies the number you must supply in the
function call

▸ the spacing (tab) indicates which statements are within a function (called the "body" of the function).

▸ The return statement is the value that we want to return to whoever called the function. It’s not necessary to have
a return statement.

FUNCTIONS

Anything new here?

15

FUNCTIONS

Strings

16

▸ string: a “string” of characters.

▸ Represent text.

▸ Denoted by quotes

▸ You can either use double quotes, e.g., "this is a
string" or single quotes 'this is also a string'

▸ But you can't mix the two for any given string 'this is not
a valid string"

▸ A new type (we have seen int, and float)

FUNCTIONS

Writing code with strings

17

▸ If you want to concatenate (i.e. combine) two strings, you
can use the plus sign. E.g.,

▸ If you want to use an int or a float as a string, you
need to convert it to a string using str function.

▸

FUNCTIONS

What do the first three functions do?

18

▸ dog_years: calculates the number of dog years, given
human years.

▸ dog_name: returns the name of the dog (in this case
“Fido”), as a string.

▸ interest_calculator: calculates the amount of interest
earned for a given amount of money at a particular rate.

FUNCTIONS

Calling functions

19

▸ If we “Run file in Python console", what do you think will
happen?

▸ nothing gets printed out!

▸ but we've now defined new functions that we can use:

FUNCTIONS

Parameters and arguments

20

▸ parameter: variable listed inside the parentheses in the function definition.

▸ argument: the value passed to the function when calling it.

▸ Notice that the number of parameters defines how many arguments we
must specify

▸ When a function is called:

▸ we evaluate each of the arguments

▸ then we execute the function line by line

▸ if there is a return statement, where the original function call was
made is replaced by the value returned.

FUNCTIONS

Number of parameters and arguments have to agree

21

▸ If we try to call one of our functions with the wrong number of
arguments, we get an error.

▸ the last line is the most important and tells us what the error was,
i.e. that the function takes 2 arguments, but we only gave it 1.

▸ If we knew that we wanted to call some of these functions, we could
also add this code to the end of the file and then that would get
executed when we run it.

FUNCTIONS

dog_stats function

22

▸ Say we call the function as dog_stats(2+5). The following will happen:

▸ First, we'll evaluate the argument to the function (2+5) and get 7

▸ 7 will then get associated with the parameter years

▸ The first statement in the function calls our other function, dog_name()

▸ the interpreter will go to the dog_name function and execute its code as defined in its body.

▸ dog_name will return "Fido", which will then get stored into the variable name.

▸ The second statement is a call to the dog_years function

▸ We evaluate its argument (years), which gives us 7

▸ 7 is then passed to dog_years

▸ 7 is associated with the parameter human_years

▸ 7*7 is calculated, giving us 49, which is returned

▸ 49 is then stored in the variable age.

▸ Finally, we return the string "Fido" + " is " + "49" + " years old" -> "Fido is 49 years old"

FUNCTIONS

Advanced BBQing

23

▸ If we look back at our bbq code, we notice that we only
need information from some of the people to calculate the
number of hot dogs.

▸ only angie and jasmine affect the number of hotdogs
required.

FUNCTIONS

hotdogs method in bbq-functions.py

24

▸ Look at the hotdogs method in bbq-functions.py. What
does it do?

▸ same thing as our bbq program, just now we've
encapsulated it as a program where we can pass it
parameters.

FUNCTIONS

hotdogs method in bbq-functions.py

25

▸ Look at the hotdogs method in bbq-functions.py. It
does as our bbq program, just now we've encapsulated it
as a program where we can pass it parameters.

FUNCTIONS

 Rest of the methods in bbq-functions.py?

26

▸ Look at the other functions in bbq-functions.py code: what
do they do?

▸ The rest of these functions don't really have any new features
from the ones we've previously seen.

▸ Notice that we can build up more complicated functions by
using the simpler functions.

▸ Don't forget that if you want to combine a string and an
int/float, you need to convert the int/float to a string
using the str method.

FUNCTIONS

Look at bbq-functions-bad-style.py

27

▸ What does this code do?

▸ These have the same functionality as the first three
functions in bbq-functions.py code.

▸ But... they're much harder to read and understand.

▸ Use good variable names, good function names and
whitespace to help make the code more readable (this is
called using good style)!

ASSIGNED READINGS AND PRACTICE PROBLEMS

Resources

▸ Textbook: Continue reading Chapter 1 and 2

▸ simple-functions.txt

▸ bbq-functions.txt

▸ bbq-functions-bad-style.txt

28

Homework
▸ (Work in progress) - Assignment 1

https://runestone.academy/ns/books/published//thinkcspy/GeneralIntro/toctree.html
https://runestone.academy/ns/books/published//thinkcspy/SimplePythonData/toctree.html
https://cs.pomona.edu/classes/cs51a/examples/Lecture2/simple-functions.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture2/bbq-functions.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture2/bbq-functions-bad-style.txt

